scholarly journals Grid-independent High Resolution Dust Emissions (v1.0) for Chemical Transport Models: Application to GEOS-Chem (version 12.5.0)

2020 ◽  
Author(s):  
Jun Meng ◽  
Randall V. Martin ◽  
Paul Ginoux ◽  
Melanie Hammer ◽  
Melissa P. Sulprizio ◽  
...  

Abstract. The nonlinear dependence of the dust saltation process on wind speed poses a challenge for models of varying resolutions. This challenge is of particular relevance for the next generation of chemical transport models with nimble capability for multiple resolutions. We develop and apply a method to harmonize dust emissions across simulations of different resolutions by generating offline grid-independent dust emissions driven by native high-resolution meteorological fields. We implement into the GEOS-Chem chemical transport model a high-resolution dust source function to generate updated offline dust emissions. These updated offline dust emissions based on high-resolution meteorological fields can better resolve weak dust source regions, such as in southern South America, southern Africa, and the southwestern United States. Identification of an appropriate dust emission strength is facilitated by the resolution independence of offline emissions. We find that the performance of simulated aerosol optical depth (AOD) versus measurements from the AERONET network and satellite remote sensing improves significantly when using the updated offline dust emissions with the total global annual dust emission strength of 2,000 Tg yr−1 rather than the standard online emissions in GEOS-Chem. The offline high-resolution dust emissions are easily implemented in chemical transport models. The source code is available online through GitHub: https://github.com/Jun-Meng/geos-chem/tree/v11-01-Patches-UniCF-vegetation . The global offline high resolution dust emission inventory is freely available (see Code and Data Availability section).

2021 ◽  
Vol 14 (7) ◽  
pp. 4249-4260
Author(s):  
Jun Meng ◽  
Randall V. Martin ◽  
Paul Ginoux ◽  
Melanie Hammer ◽  
Melissa P. Sulprizio ◽  
...  

Abstract. The nonlinear dependence of the dust saltation process on wind speed poses a challenge for models of varying resolutions. This challenge is of particular relevance for the next generation of chemical transport models with nimble capability for multiple resolutions. We develop and apply a method to harmonize dust emissions across simulations of different resolutions by generating offline grid-independent dust emissions driven by native high-resolution meteorological fields. We implement into the GEOS-Chem chemical transport model a high-resolution dust source function to generate updated offline dust emissions. These updated offline dust emissions based on high-resolution meteorological fields strengthen dust emissions over relatively weak dust source regions, such as in southern South America, southern Africa and the southwestern United States. Identification of an appropriate dust emission strength is facilitated by the resolution independence of offline emissions. We find that the performance of simulated aerosol optical depth (AOD) versus measurements from the AERONET network and satellite remote sensing improves significantly when using the updated offline dust emissions with the total global annual dust emission strength of 2000 Tg yr−1 rather than the standard online emissions in GEOS-Chem. The updated simulation also better represents in situ measurements from a global climatology. The offline high-resolution dust emissions are easily implemented in chemical transport models. The source code and global offline high-resolution dust emission inventory are publicly available.


2019 ◽  
Vol 4 ◽  
pp. 203-218
Author(s):  
I.N. Kusnetsova ◽  
◽  
I.U. Shalygina ◽  
M.I. Nahaev ◽  
U.V. Tkacheva ◽  
...  

2021 ◽  
Vol 248 ◽  
pp. 118022
Author(s):  
Min Xu ◽  
Jianbing Jin ◽  
Guoqiang Wang ◽  
Arjo Segers ◽  
Tuo Deng ◽  
...  

Author(s):  
Scott D. Chambers ◽  
Elise-Andree Guérette ◽  
Khalia Monk ◽  
Alan D. Griffiths ◽  
Yang Zhang ◽  
...  

We propose a new technique to prepare statistically-robust benchmarking data for evaluating chemical transport model meteorology and air quality parameters within the urban boundary layer. The approach employs atmospheric class-typing, using nocturnal radon measurements to assign atmospheric mixing classes, and can be applied temporally (across the diurnal cycle), or spatially (to create angular distributions of pollutants as a top-down constraint on emissions inventories). In this study only a short (<1-month) campaign is used, but grouping of the relative mixing classes based on nocturnal mean radon concentrations can be adjusted according to dataset length (i.e., number of days per category), or desired range of within-class variability. Calculating hourly distributions of observed and simulated values across diurnal composites of each class-type helps to: (i) bridge the gap between scales of simulation and observation, (ii) represent the variability associated with spatial and temporal heterogeneity of sources and meteorology without being confused by it, and (iii) provide an objective way to group results over whole diurnal cycles that separates ‘natural complicating factors’ (synoptic non-stationarity, rainfall, mesoscale motions, extreme stability, etc.) from problems related to parameterizations, or between-model differences. We demonstrate the utility of this technique using output from a suite of seven contemporary regional forecast and chemical transport models. Meteorological model skill varied across the diurnal cycle for all models, with an additional dependence on the atmospheric mixing class that varied between models. From an air quality perspective, model skill regarding the duration and magnitude of morning and evening “rush hour” pollution events varied strongly as a function of mixing class. Model skill was typically the lowest when public exposure would have been the highest, which has important implications for assessing potential health risks in new and rapidly evolving urban regions, and also for prioritizing the areas of model improvement for future applications.


2016 ◽  
Vol 9 (7) ◽  
pp. 2753-2779 ◽  
Author(s):  
Steffen Beirle ◽  
Christoph Hörmann ◽  
Patrick Jöckel ◽  
Song Liu ◽  
Marloes Penning de Vries ◽  
...  

Abstract. The STRatospheric Estimation Algorithm from Mainz (STREAM) determines stratospheric columns of NO2 which are needed for the retrieval of tropospheric columns from satellite observations. It is based on the total column measurements over clean, remote regions as well as over clouded scenes where the tropospheric column is effectively shielded. The contribution of individual satellite measurements to the stratospheric estimate is controlled by various weighting factors. STREAM is a flexible and robust algorithm and does not require input from chemical transport models. It was developed as a verification algorithm for the upcoming satellite instrument TROPOMI, as a complement to the operational stratospheric correction based on data assimilation. STREAM was successfully applied to the UV/vis satellite instruments GOME 1/2, SCIAMACHY, and OMI. It overcomes some of the artifacts of previous algorithms, as it is capable of reproducing gradients of stratospheric NO2, e.g., related to the polar vortex, and reduces interpolation errors over continents. Based on synthetic input data, the uncertainty of STREAM was quantified as about 0.1–0.2 × 1015 molecules cm−2, in accordance with the typical deviations between stratospheric estimates from different algorithms compared in this study.


Sign in / Sign up

Export Citation Format

Share Document