flash rate
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Unashish Mondal ◽  
Subrat Kumar Panda ◽  
Someshwar Das ◽  
Devesh Sharma

Abstract Lightning is an electrical discharge - a'spark' or 'flash' as charged regions in the atmosphere instantly balance themselves through this discharge. It is a beautiful and deadly naturally occurring phenomenon. In June 2020, more than a hundred people died in the state Bihar of India only in three days’ span due to lightning events. In this work, Lightning Imaging Sensor (LIS) information from the Tropical Rainfall Measuring Mission (TRMM) satellite with a very high spatial resolution of 0.1 X 0.1 degree has been utilized to create the climatology of India for 16 years from 1998 to 2013. Diurnal, monthly, and seasonal variations in the occurrence of lightning flash rate density have also been analyzed. TRMM satellite low-resolution monthly time series (LRMTS) with 2.5-degree resolution datasets have been used for lightning trend analysis. The diurnal lightning event mainly occurs in the afternoon/evening (1400-1900 Hrs) time duration around 0.001 flashes/km2/hr. The highest lightning occurred in May (0.04 flashes/km2/day) and the least in December (0.005 flashes/km2/day). The distribution of lightning flash counts by season over India landmass is mainly in pre-monsoon (MAM) ranges from 0.248 – 0.491 flashes/km2/day, and monsoon (JJA) ranges from 0.284 – 0.451 flashes/km2/day and decreases afterward. Spatially, the distribution of lightning flashes mainly at North-Eastern region along with Bangladesh, Bihar, Jharkhand, Orissa, and Jammu & Kashmir region. The CAPE and K Index have positively correlated with the flash rate density seasonally but CAPE is more significantly correlated. This study also focused on finding of lightning hotspots region of India district wise and Rajouri district in Jammu and Kashmir got the highest lightning with 121 flashes/km2/yr.


2021 ◽  
Vol 13 (19) ◽  
pp. 3866
Author(s):  
Xin Zhang ◽  
Yan Yin ◽  
Julia Kukulies ◽  
Yang Li ◽  
Xiang Kuang ◽  
...  

The Geostationary Lightning Mapper (GLM) on the Geostationary Operational Environmental Satellite 16 (GOES-16) detects total lightning continuously, with a high spatial resolution and detection efficiency. Coincident data from the GLM and the Advanced Baseline Imager (ABI) are used to explore the correlation between the cloud top properties and flash activity across the continental United States (CONUS) sector from May to September 2020. A large number of collocated infrared (IR) brightness temperature (TBB), cloud top height (CTH) and lightning data provides robust statistics. Overall, the likelihood of lightning occurrence and high flash density is higher if the TBB is colder than 225 K. The higher CTH is observed to be correlated with a larger flash rate, a smaller flash size, stronger updraft, and larger optical energy. Furthermore, the cloud top updraft velocity (w) is estimated based on the decreasing rate of TBB, but it is smaller than the updraft velocity of the convective core. As a result, the relationship between CTH and lightning flash rate is investigated independently of w over the continental, oceanic and coastal regimes in the tropics and mid-latitudes. When the CTH is higher than 12 km, the flash rates of oceanic lightning are 38% smaller than those of both coastal and continental lightning. In addition, it should be noted that more studies are necessary to examine why the oceanic lightning with low clouds (CTH < 8 km) has higher flash rates than lightning over land and coast. Finally, the exponents of derived power relationship between CTH and lightning flash rate are smaller than four, which is underestimated due to the GLM detection efficiency and the difference between IR CTH and 20 dBZ CTH. The results from combining the ABI and GLM products suggest that merging multiple satellite datasets could benefit both lightning activity and parameterization studies, although the parallax corrections should be considered.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yong Han ◽  
Hao Luo ◽  
Yonghua Wu ◽  
Yijun Zhang ◽  
Wenjie Dong

AbstractLightning flash rate is strongly influenced by cloud microphysics, such as cloud ice properties, but this relationship is poorly constrained. Here we analyze 20 years of satellite-derived lightning flash rate data and cloud water data from the ERA-Interim reanalysis above continental and ocean regions at a global scale. We find a robust modified gamma function relationship between cloud ice fraction and lightning rate. Lightning rate increases initially with increasing cloud ice fraction in stratocumulus, liquid clouds. Maximum flash rates are reached at a critical cloud ice fraction value that is associated with high top, large optical thickness, deep convective clouds. Beyond the critical value, lightning rate decreases as the ice fraction increases to values representative of cirrus, ice clouds. We find consistent critical ice fraction values over continental and oceanic regions, respectively, with a lower value over the continent due to greater cloud thickness at similar cloud top height. We suggest that our findings may help improve the accuracy of lightning forecast and hazard prediction.


2021 ◽  
pp. 112-122
Author(s):  
A.A. SIN'KEVICH ◽  
◽  
B. BOE ◽  
S. PAWAR ◽  
YU. P. MIKHAILOVSKII ◽  
...  

Characteristics of developing convective clouds (Cu) in Karnataka state (India) during the thunderstorm formation are analyzed using weather radar and lightning detection network data. It is noted that radar characteristics of Cu which produced lightning, exceed those where lightning does not form. The study has shown that the number of negative cloud-to-ground strokes exceeds the number of positive ones by an order of magnitude. The radar characteristics of clouds in India and the North Caucasus are compared. Significant differences in lightning flash rates over the mentioned regions are registered. A low correlation is found between the supercooled volume and the flash rate of negative lightning. The paper also presents the results of studying the dynamic characteristics of four Cu seeded with a glaciogenic reagent. The thunderstorm risk is estimated for the clouds. It is shown that the seeding increases a probability of lightning events.


2021 ◽  
Vol 42 (17) ◽  
pp. 6766-6784
Author(s):  
Yunish Shrestha ◽  
Yan(Rockee) Zhang ◽  
Richard Doviak ◽  
P.W Chan

2021 ◽  
Author(s):  
Erwan Brisson ◽  
Ulrich Blahak ◽  
Philippe Lucas-Picher ◽  
Christopher Purr ◽  
Bodo Ahrens

AbstractLightning climate change projections show large uncertainties caused by limited empirical knowledge and strong assumptions inherent to coarse-grid climate modeling. This study addresses the latter issue by implementing and applying the lightning potential index parameterization (LPI) into a fine-grid convection-permitting regional climate model (CPM). This setup takes advantage of the explicit representation of deep convection in CPMs and allows for process-oriented LPI inputs such as vertical velocity within convective cells and coexistence of microphysical hydrometeor types, which are known to contribute to charge separation mechanisms. The LPI output is compared to output from a simpler flash rate parameterization, namely the CAPE $$\times$$ × PREC parameterization, applied in a non-CPM on a coarser grid. The LPI’s implementation into the regional climate model COSMO-CLM successfully reproduces the observed lightning climatology, including its latitudinal gradient, its daily and hourly probability distributions, and its diurnal and annual cycles. Besides, the simulated temperature dependence of lightning reflects the observed dependency. The LPI outperforms the CAPE $$\times$$ × PREC parameterization in all applied diagnostics. Based on this satisfactory evaluation, we used the LPI to a climate change projection under the RCP8.5 scenario. For the domain under investigation centered over Germany, the LPI projects a decrease of $$4.8\%$$ 4.8 % in flash rate by the end of the century, in opposition to a projected increase of $$17.4\%$$ 17.4 % as projected using the CAPE $$\times$$ × PREC parameterization. The future decrease of LPI occurs mostly during the summer afternoons and is related to (i) a change in convection occurrence and (ii) changes in the microphysical mixing. The two parameterizations differ because of different convection occurrences in the CPM and non-CPM and because of changes in the microphysical mixing, which is only represented in the LPI lightning parameterization.


2021 ◽  
Vol 21 (9) ◽  
pp. 7053-7082
Author(s):  
Ashok K. Luhar ◽  
Ian E. Galbally ◽  
Matthew T. Woodhouse ◽  
Nathan Luke Abraham

Abstract. Although lightning-generated oxides of nitrogen (LNOx) account for only approximately 10 % of the global NOx source, they have a disproportionately large impact on tropospheric photochemistry due to the conducive conditions in the tropical upper troposphere where lightning is mostly discharged. In most global composition models, lightning flash rates used to calculate LNOx are expressed in terms of convective cloud-top height via the Price and Rind (1992) (PR92) parameterisations for land and ocean, where the oceanic parameterisation is known to greatly underestimate flash rates. We conduct a critical assessment of flash-rate parameterisations that are based on cloud-top height and validate them within the Australian Community Climate and Earth System Simulator – United Kingdom Chemistry and Aerosol (ACCESS-UKCA) global chemistry–climate model using the Lightning Imaging Sensor and Optical Transient Detector (LIS/OTD) satellite data. While the PR92 parameterisation for land yields satisfactory predictions, the oceanic parameterisation, as expected, underestimates the observed flash-rate density severely, yielding a global average over the ocean of 0.33 flashes s−1 compared to the observed 9.16 flashes s−1 and leading to LNOx being underestimated proportionally. We formulate new flash-rate parameterisations following Boccippio's (2002) scaling relationships between thunderstorm electrical generator power and storm geometry coupled with available data. The new parameterisation for land performs very similarly to the corresponding PR92 one, as would be expected, whereas the new oceanic parameterisation simulates the flash-rate observations much more accurately, giving a global average over the ocean of 8.84 flashes s−1. The use of the improved flash-rate parameterisations in ACCESS-UKCA changes the modelled tropospheric composition – global LNOx increases from 4.8 to 6.6 Tg N yr−1; the ozone (O3) burden increases by 8.5 %; there is an increase in the mid- to upper-tropospheric NOx by as much as 40 pptv, a 13 % increase in the global hydroxyl radical (OH), a decrease in the methane lifetime by 6.7 %, and a decrease in the lower-tropospheric carbon monoxide (CO) by 3 %–7 %. Compared to observations, the modelled tropospheric NOx and ozone in the Southern Hemisphere and over the ocean are improved by this new flash-rate parameterisation.


2021 ◽  
Author(s):  
Erwan Brisson ◽  
Ulrich Blahak ◽  
Philippe Lucas-Picher ◽  
Christopher Purr ◽  
Bodo Ahrens

Abstract Lightning climate change projections show large uncertainties caused by limited empirical knowledge and strong assumptions inherent to coarse-grid climate modeling. This study addresses the latter issue by implementing and applying the lightning potential index parameterization (LPI) into a fine-grid convection-permitting regional climate model (CPM). This setup takes advantage of the explicit representation of deep convection in CPMs and allows for process-oriented LPI inputs such as vertical velocity within convective cells and coexistence of microphysical hydrometeor types, which are known to contribute to charge separation mechanisms. The LPI output is compared to output from a simpler flash rate parameterization, namely the CAPE x PREC parameterization, applied in a non-CPM on a coarser grid. The LPI's implementation into the regional climate model COSMO-CLM successfully reproduces the observed lightning climatology, including its latitudinal gradient, its daily and hourly probability distributions, and its diurnal and annual cycles. Besides, the simulated temperature dependence of lightning reflects the observed dependency. The LPI outperforms the CAPE x PREC parameterization in all applied diagnostics. Based on this satisfactory evaluation, we used the LPI to a climate change projection under the RCP8.5 scenario. For the domain under investigation centered over Germany, the LPI projects a decrease of 4.8% in flash rate by the end of the century, in opposition to a projected increase of 17.4% as projected using the CAPE x PREC parameterization. The future decrease of LPI occurs mostly during the summer afternoons and is related to (i) a change in convection occurrence and (ii) changes in the microphysical mixing. The two parameterizations differ because of different convection occurrences in the CPM and non-CPM and because of changes in the microphysical mixing, which is only represented in the LPI lightning parameterization.


Sign in / Sign up

Export Citation Format

Share Document