Supplementary material to "Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an Unmanned Aerial Vehicle"

Author(s):  
Filippo Bandini ◽  
Daniel Olesen ◽  
Jakob Jakobsen ◽  
Cecile Marie Margaretha Kittel ◽  
Sheng Wang ◽  
...  
2017 ◽  
Author(s):  
Filippo Bandini ◽  
Daniel Olesen ◽  
Jakob Jakobsen ◽  
Cecile Marie Margaretha Kittel ◽  
Sheng Wang ◽  
...  

Abstract. High-quality bathymetric maps of inland water bodies are a common requirement for hydraulic engineering and hydrological science applications. Remote sensing methods, e.g. space-borne and airborne multispectral or LIDAR, have been developed to estimate water depth, but are ineffective for most inland water bodies, because of water turbidity and attenuation of electromagnetic radiation in water. Surveys conducted with boats equipped with sonars can retrieve accurate water depths, but are expensive, time-consuming, and are unsuitable for non-navigable water bodies. We develop and assess a novel approach to retrieve accurate and high resolution bathymetry maps. We measured accurate water depths using a tethered floating sonar controlled by an Unmanned Aerial Vehicle (UAV) in a Danish lake and in a few river cross sections. The developed technique combines the advantages of remote sensing techniques with the potential of bathymetric sonars. UAV surveys can be conducted also in non-navigable, inaccessible, or remote water bodies. The tethered sonar can measure bathymetry with an accuracy of ca. 2.1 % of the actual depth for observations up to 35 m, without being significantly affected by water turbidity, bedform or bed material.


2018 ◽  
Vol 22 (8) ◽  
pp. 4165-4181 ◽  
Author(s):  
Filippo Bandini ◽  
Daniel Olesen ◽  
Jakob Jakobsen ◽  
Cecile Marie Margaretha Kittel ◽  
Sheng Wang ◽  
...  

Abstract. High-quality bathymetric maps of inland water bodies are a common requirement for hydraulic engineering and hydrological science applications. Remote sensing methods, such as space-borne and airborne multispectral imaging or lidar, have been developed to estimate water depth, but are ineffective for most inland water bodies, because of the attenuation of electromagnetic radiation in water, especially under turbid conditions. Surveys conducted with boats equipped with sonars can retrieve accurate water depths, but are expensive, time-consuming, and unsuitable for unnavigable water bodies. We develop and assess a novel approach to retrieve accurate and high-resolution bathymetry maps. We measured accurate water depths using a tethered floating sonar controlled by an unmanned aerial vehicle (UAV) in a lake and in two different rivers located in Denmark. The developed technique combines the advantages of remote sensing with the potential of bathymetric sonars. UAV surveys can be conducted also in unnavigable, inaccessible, or remote water bodies. The tethered sonar can measure bathymetry with an accuracy of ∼2.1 % of the actual depth for observations up to 35 m, without being significantly affected by water turbidity, bed form, or bed material.


2016 ◽  
Vol 52 (6) ◽  
pp. 43-49
Author(s):  
V. V. Zamorov ◽  
Ye. Yu. Leonchyk ◽  
M. P. Zamorova ◽  
M. M. Dzhurtubayev

2011 ◽  
Vol 5 (2) ◽  
pp. 205 ◽  
Author(s):  
Gouri Sankar Bhunia ◽  
Shreekant Kesari ◽  
Nandini Chatterjee ◽  
Dilip Kumar Pal ◽  
Vijay Kumar ◽  
...  

2021 ◽  
Author(s):  
Irina Soustova ◽  
Yuliya Troitskaya ◽  
Daria Gladskikh

<p>A parameterization of the Prandtl number as a function of the gradient Richardson number is proposed in order to correctly take into account stratification when calculating the thermohydrodynamic regime of inland water bodies. This parameterization allows the existence of turbulence at any values ​​of the Richardson number.</p><p>The proposed function is used to calculate the turbulent thermal conductivity coefficient in a k-epsilon mixing scheme. Modification is implemented in the three-dimensional hydrostatic model developed at the Research Computing Center of Moscow State University.</p><p>It is demonstrated that the proposed modification (in contrast to the standard scheme with a constant Prandtl number) leads to smoothing all sharp changes in vertical distributions of turbulent mixing parameters (turbulent kinetic energy, temperature and thickness of the shock layer) and imposes a Richardson number-dependent relation on the empirical constants of k-epsilon turbulent mixing scheme.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p>


2021 ◽  
pp. 317-325
Author(s):  
D. S. Gladskikh ◽  
A. M. Kuznetsova ◽  
G. A. Baydakov ◽  
Yu. I. Troitskaya

2017 ◽  
Vol 198 ◽  
pp. 345-362 ◽  
Author(s):  
Igor Klein ◽  
Ursula Gessner ◽  
Andreas J. Dietz ◽  
Claudia Kuenzer

Sign in / Sign up

Export Citation Format

Share Document