scholarly journals Supplementary material to "New Model of Reactive Transport in Single-Well Injection-Withdrawal Test with Aquitard Effect"

Author(s):  
Quanrong Wang ◽  
Wenguang Shi ◽  
Hongbin Zhan
2020 ◽  
Vol 24 (8) ◽  
pp. 3983-4000
Author(s):  
Quanrong Wang ◽  
Junxia Wang ◽  
Hongbin Zhan ◽  
Wenguang Shi

Abstract. The model of single-well push–pull (SWPP) test has been widely used to investigate reactive radial dispersion in remediation or parameter estimation of in situ aquifers. Previous analytical solutions only focused on a completely isolated aquifer for the SWPP test, excluding any influence of aquitards bounding the tested aquifer, and ignored the wellbore storage of the chaser and rest phases in the SWPP test. Such simplification might be questionable in field applications when test durations are relatively long because solute transport in or out of the bounding aquitards is inevitable due to molecular diffusion and cross-formational advective transport. Here, a new SWPP model is developed in an aquifer–aquitard system with wellbore storage, and the analytical solution in the Laplace domain is derived. Four phases of the test are included: the injection phase, the chaser phase, the rest phase and the extraction phase. As the permeability of the aquitard is much smaller than the permeability of the aquifer, the flow is assumed to be perpendicular to the aquitard; thus only vertical dispersive and advective transports are considered for the aquitard. The validity of this treatment is tested against results grounded in numerical simulations. The global sensitivity analysis indicates that the results of the SWPP test are largely sensitive (i.e., influenced by) to the parameters of porosity and radial dispersion of the aquifer, whereas the influence of the aquitard on results could not be ignored. In the injection phase, the larger radial dispersivity of the aquifer could result in the smaller values of breakthrough curves (BTCs), while there are greater BTC values in the chaser and rest phases. In the extraction phase, it could lead to the smaller peak values of BTCs. The new model of this study is a generalization of several previous studies, and it performs better than previous studies ignoring the aquitard effect and wellbore storage for interpreting data of the field SWPP test reported by Yang et al. (2014).


2020 ◽  
Author(s):  
Quanrong Wang ◽  
Wenguang Shi ◽  
Hongbin Zhan

Abstract. The model of single-well injection-withdrawal (SWIW) test has been widely used to investigate reactive radial dispersion in remediation or parameter estimation of the in situ aquifers. Previous analytical solutions only focused on a completely isolated aquifer for the SWIW test, excluding any influence of aquitards bounding the tested aquifer. This simplification might be questionable in field applications when test durations are relatively long, because solute transport in or out of the bounding aquitards is inevitable due to molecular diffusion and cross-formational advective transport. Here, a new SWIW model is developed in an aquifer-aquitard system, and the analytical solution in the Laplace domain is derived. Four phases of the test are included: the injection phase, the chaser phase, the rest phase and the extraction phase. The Green's function method is employed for the solution in the extraction phase. As the permeability of aquitard is much smaller than the permeability of the aquifer, the flow is assumed to be perpendicular to the aquitard, thus only vertical dispersive and advective transports are considered for aquitard. The validity of this treatment is tested by a numerical solution. The sensitivity analysis demonstrates that the influence of vertical flow velocity and porosity in the aquitards, and radial dispersion of the aquifer is more sensitive to the SWIW test than other parameters. In the injection phase, the larger radial dispersivity of the aquifer could result in the smaller values of breakthrough curves (BTCs), while greater values of BTCs of the chaser and rest phases. In the extraction phase, it could lead to the smaller peak values of BTCs. The new model of this study performs better than previous studies excluding the aquitard effect for interpreting data of the field SWIW test.


2018 ◽  
Author(s):  
John M. C. Plane ◽  
Wuhu Feng ◽  
Juan Carlos Gómez Martín ◽  
Michael Gerding ◽  
Shikha Raizada

SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1075-1085 ◽  
Author(s):  
Robert Fortenberry ◽  
Pearson Suniga ◽  
Mojdeh Delshad ◽  
Bharat Singh ◽  
Hassan A. AlKaaoud ◽  
...  

Summary Single-well-partitioning-tracer tests (SWTTs) are used to measure the saturation of oil or water near a wellbore. If used before and after injection of enhanced-oil-recovery (EOR) fluids, they can evaluate EOR flood performance in a so-called one-spot pilot. Four alkaline/surfactant/polymer (ASP) one-spot pilots were recently completed in Kuwait's Sabriyah-Mauddud (SAMA) reservoir, a thick, heterogeneous carbonate operated by Kuwait Oil Company (KOC). UTCHEM (Delshad et al. 2013), the University of Texas chemical-flooding reservoir simulator, was used to interpret results of two of these one-spot pilots performed in an unconfined zone within the thick SAMA formation. These simulations were used to design a new method for injecting partitioning tracers for one-spot pilots. The recommended practice is to inject the tracers into a relatively uniform confined zone, but, as seen in this work, that is not always possible, so an alternative design was needed to improve the accuracy of the test. The simulations showed that there was a flow-conformance problem when the partitioning tracers were injected into a perforated zone without confinement after the viscous ASP and polymer-drive solutions. The water-conveyed-tracer solutions were being partially diverted outside of the ASP-swept zone where they contacted unswept oil. Because of this problem, the initial interpretation of the performance of the chemicals was pessimistic, overestimating the chemical residual oil saturation (ROS) by up to 12 saturation units. Additional simulations indicated that the oil saturation in the ASP-swept zone could be properly estimated by avoiding the post-ASP waterflood and injecting the post-ASP tracers in a viscous polymer solution rather than in water. An ASP one-spot pilot using the new SWTT design resulted in an estimated ROS of only 0.06 after injection of chemicals (Carlisle et al. 2014). These saturation values were obtained by history matching tracer-production data by use of both traditional continuously-stirred-tank (CSTR) models and compositional, reactive-transport reservoir models. The ability of the simulator to model every phase of the one-spot pilot operation was crucial to the insight of modified SWTT design. The waterflood, first SWTT, ASP flood, and the final SWTT were simulated using a heterogeneous permeability field representative of the Mauddud formation. Laboratory data, field-ASP quality-control information, and injection strategy were all accounted for in these simulations. We describe the models, how they were used, and how the results were used to modify the SWTT design. We further discuss the implications for other SWTTs. The advantage of mechanistic simulation of multiple aspects of a one-spot pilot is an important theme of this study. Because the pore space investigated by the SWTTs can be affected by the previously injected EOR fluids (and vice versa), these interactions should be accounted for. This simulation approach can be used to identify and mitigate design problems during each phase of a challenging one-spot pilot.


2017 ◽  
Author(s):  
Ronny Lauerwald ◽  
Pierre Regnier ◽  
Marta Camino-Serrano ◽  
Bertrand Guenet ◽  
Matthieu Guimberteau ◽  
...  

2018 ◽  
Author(s):  
Quanrong Wang ◽  
Hongbin Zhan

Abstract. Using the single-well push-pull (SWPP) test to determine the in situ biogeochemical reaction kinetics, a chase phase and a rest phase were recommended to increase the duration of reaction, besides the injection and extraction phases. In this study, we presented multi-species reactive models of the four-phase SWPP test considering the wellbore storages for both groundwater flow and solute transport and a finite aquifer hydraulic diffusivity, including three isotherm-based models (Freundlich, Langmuir and linear sorption models), one-site kinetic sorption model, two-site sorption model, which were also capable of describing the biogeochemical reactive transport processes, e.g. Monod or Michaelis-Menten kinetics. The models of the wellbore storage for solute transport were derived based on the mass balance, and the results showed that ignoring it could produce great errors in the SWPP test. In the injection and chase phases, the influence of the wellbore storage increased with the decreasing aquifer hydraulic diffusivity. The peak values of the breakthrough curves (BTCs) increased with the increasing aquifer hydraulic diffusivity in the extraction phase, and the arrival time of the peak value became shorter with a greater aquifer hydraulic diffusivity. Meanwhile, the Robin condition performed well at the rest phase only when the chase concentration was zero and the solute in the injection phase was completely flushed out of the borehole into the aquifer. The Danckwerts condition was better than the Robin condition even when the chase concentration was not zero. The reaction parameters could be determined by directly best fitting the observed data when the non-linear reactions were described by piece-wise linear functions, while such an approach might not work if one attempted to use non-linear functions to describe such non-linear reactions. The field application demonstrated that the new model of this study performed well in interpreting BTCs of a SWPP test.


2019 ◽  
Vol 23 (4) ◽  
pp. 2207-2223 ◽  
Author(s):  
Quanrong Wang ◽  
Hongbin Zhan

Abstract. Using the single-well push–pull (SWPP) test to determine the in situ biogeochemical reaction kinetics, a chase phase and a rest phase were recommended to increase the duration of reaction, besides the injection and extraction phases. In this study, we presented multi-species reactive models of the four-phase SWPP test considering the wellbore storages for both groundwater flow and solute transport and a finite aquifer hydraulic diffusivity, which were ignored in previous studies. The models of the wellbore storage for solute transport were proposed based on the mass balance, and the sensitivity analysis and uniqueness analysis were employed to investigate the assumptions used in previous studies on the parameter estimation. The results showed that ignoring it might produce great errors in the SWPP test. In the injection and chase phases, the influence of the wellbore storage increased with the decreasing aquifer hydraulic diffusivity. The peak values of the breakthrough curves (BTCs) increased with the increasing aquifer hydraulic diffusivity in the extraction phase, and the arrival time of the peak value became shorter with a greater aquifer hydraulic diffusivity. Meanwhile, the Robin condition performed well at the rest phase only when the chase concentration was zero and the solute in the injection phase was completely flushed out of the borehole into the aquifer. The Danckwerts condition was better than the Robin condition even when the chase concentration was not zero. The reaction parameters could be determined by directly best fitting the observed data when the nonlinear reactions were described by piece-wise linear functions, while such an approach might not work if one attempted to use nonlinear functions to describe such nonlinear reactions. The field application demonstrated that the new model of this study performed well in interpreting BTCs of a SWPP test.


Sign in / Sign up

Export Citation Format

Share Document