injection phase
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Ahmad Ismail Azahree ◽  
Farhana Jaafar Azuddin ◽  
Siti Syareena Mohd Ali ◽  
Muhammad Hamzi Yakup ◽  
Mohd Azlan Mustafa ◽  
...  

Abstract A depleted gas field is selected as CO2 storage site for future high CO2 content gas field development in Malaysia. The reservoir selected is a carbonate buildup of middle to late Miocene age. This paper describes an integrated modeling approach to evaluate CO2 sequestration potential in depleted carbonate gas reservoir. Integrated dynamic-geochemical and dynamic-geomechanics coupled modeling is required to properly address the risks and uncertainties such as, effect of compaction and subsidence during post-production and injection. The main subsurface uncertainties for assessing the CO2 storage potential are (i) CO2 storage capacity due to higher abandonment pressure (ii) CO2 containment due to geomechanical risks (iii) change in reservoir properties due to reaction of reservoir rock with injected CO2. These uncertainties have been addressed by first building the compositional dynamic model adequately history matched to the production data, and then coupling with geomechanical model and geochemical module during the CO2 injection phase. This is to further study on the trapping mechanisms, caprock integrity, compaction-subsidence implication towards maximum storage capacity and injectivity. The initial standalone dynamic modeling poses few challenges to match the water production in the field due to presence of karsts, extent of a baffle zone between the aquifer and producing zones and uncertainty in the aquifer volume. The overall depletion should be matched, since the field abandonment pressure impacts the CO2 injectivity and storage capacity. A reasonably history matched coupled dynamic-geomechanical model is used as base case for simulating CO2 injection. The dynamic-geomechanical coupling is done with 8 stress steps based on critical pressure changes throughout production and CO2 injection phase. Overburden and reservoir properties has been mapped in Geomechanical grid and was run using two difference constitutive model; Mohr's Coulomb and Modified Cam Clay respectively. The results are then calibrated with real subsidence measurement at platform location. This coupled model has been used to predict the maximum CO2 injection rate of 100 MMscf/d/well and a storage capacity of 1.34 Tscf. The model allows to best design the injection program in terms of well location, target injection zone and surface facilities design. This coupled modeling study is used to mature the field as a viable storage site. The established workflow starting from static model to coupled model to forecasting can be replicated in other similar projects to ensure the subsurface robustness, reduce uncertainty and risk mitigation of the field for CO2 storage site.


2020 ◽  
Vol 24 (8) ◽  
pp. 3983-4000
Author(s):  
Quanrong Wang ◽  
Junxia Wang ◽  
Hongbin Zhan ◽  
Wenguang Shi

Abstract. The model of single-well push–pull (SWPP) test has been widely used to investigate reactive radial dispersion in remediation or parameter estimation of in situ aquifers. Previous analytical solutions only focused on a completely isolated aquifer for the SWPP test, excluding any influence of aquitards bounding the tested aquifer, and ignored the wellbore storage of the chaser and rest phases in the SWPP test. Such simplification might be questionable in field applications when test durations are relatively long because solute transport in or out of the bounding aquitards is inevitable due to molecular diffusion and cross-formational advective transport. Here, a new SWPP model is developed in an aquifer–aquitard system with wellbore storage, and the analytical solution in the Laplace domain is derived. Four phases of the test are included: the injection phase, the chaser phase, the rest phase and the extraction phase. As the permeability of the aquitard is much smaller than the permeability of the aquifer, the flow is assumed to be perpendicular to the aquitard; thus only vertical dispersive and advective transports are considered for the aquitard. The validity of this treatment is tested against results grounded in numerical simulations. The global sensitivity analysis indicates that the results of the SWPP test are largely sensitive (i.e., influenced by) to the parameters of porosity and radial dispersion of the aquifer, whereas the influence of the aquitard on results could not be ignored. In the injection phase, the larger radial dispersivity of the aquifer could result in the smaller values of breakthrough curves (BTCs), while there are greater BTC values in the chaser and rest phases. In the extraction phase, it could lead to the smaller peak values of BTCs. The new model of this study is a generalization of several previous studies, and it performs better than previous studies ignoring the aquitard effect and wellbore storage for interpreting data of the field SWPP test reported by Yang et al. (2014).


2020 ◽  
Author(s):  
Quanrong Wang ◽  
Wenguang Shi ◽  
Hongbin Zhan

Abstract. The model of single-well injection-withdrawal (SWIW) test has been widely used to investigate reactive radial dispersion in remediation or parameter estimation of the in situ aquifers. Previous analytical solutions only focused on a completely isolated aquifer for the SWIW test, excluding any influence of aquitards bounding the tested aquifer. This simplification might be questionable in field applications when test durations are relatively long, because solute transport in or out of the bounding aquitards is inevitable due to molecular diffusion and cross-formational advective transport. Here, a new SWIW model is developed in an aquifer-aquitard system, and the analytical solution in the Laplace domain is derived. Four phases of the test are included: the injection phase, the chaser phase, the rest phase and the extraction phase. The Green's function method is employed for the solution in the extraction phase. As the permeability of aquitard is much smaller than the permeability of the aquifer, the flow is assumed to be perpendicular to the aquitard, thus only vertical dispersive and advective transports are considered for aquitard. The validity of this treatment is tested by a numerical solution. The sensitivity analysis demonstrates that the influence of vertical flow velocity and porosity in the aquitards, and radial dispersion of the aquifer is more sensitive to the SWIW test than other parameters. In the injection phase, the larger radial dispersivity of the aquifer could result in the smaller values of breakthrough curves (BTCs), while greater values of BTCs of the chaser and rest phases. In the extraction phase, it could lead to the smaller peak values of BTCs. The new model of this study performs better than previous studies excluding the aquitard effect for interpreting data of the field SWIW test.


2019 ◽  
Vol 15 (6) ◽  
pp. 1255-1273
Author(s):  
Korti Mohammed Choukri ◽  
Korti Abdel Illah Nabil ◽  
Abboudi Said

Purpose High-pressure die casting is one of the manufacturing techniques used for the rational mass production of metal parts. Due to the high velocity of the molten metal during the injection phase, the die casting of aluminum is so complex and it is almost impossible to calculate these exact performances. Numerical simulation is an effective way to optimize the injection phase and minimize air entrapment that causes porosity defects in the metal. Generally, the filling phase of the molten metal in the shot sleeve is neglected in most scientific work. This phase is followed by a rest period to allow the escape of the resident air bubbles (gravity effect). The paper aims to discuss these issue. Design/methodology/approach It is relatively clear that the model described poses a great challenge for numerical implementation, especially for 3D geometries. The governing transport equations are solved numerically using the commercial CFD solver Fluent and the equations are discretized using a pressure-based finite volume method. The coupling pressure–velocity was solved by the PISO algorithm. The PISO algorithm takes relatively more CPU time per solver iteration, but it significantly decreases the number of iterations required for the convergence of the transient flow problems. Laminar flow inside air and molten metal was assumed. In order to describe the behavior of the molten metal, a VOF model has been activated. The model makes it possible to account for the moving boundary due to the variation of the shot sleeve volume caused by the plunger displacement. The scheme used in the discretization of momentum equation was the first-order upwind scheme, and the scheme used for the pressure was the PRESTO. The profile of the plunger velocity, boundary conditions change with time and the physical properties change with liquid fraction were used by implementation of a user-defined function. For the discretization of the domain, an unstructured mesh with triangular elements is used. After conducting mesh sensitivity study, a mesh having 53,813 triangular elements has been chosen for the present study. The convergence criterion was set equal to 10–4 for all parameters. Findings The results show that the rest and global filling times increase by 2.5 and 8.57 percent with decreasing the pouring velocity by 10 percent. In addition, the rest and global filling times decrease by 5.77 and 8.12 percent with increasing the pouring velocity by 10 percent. Originality/value After the filling phase, it is necessary to offer a rest period before the injection phase. However, the rest and global filling times increase by 2.5 and 8.57 percent with decreasing the pouring velocity by 10 percent. In addition, the rest and global filling times decrease by 5.77 and 8.12 percent with increasing the pouring velocity by 10 percent. Increasing the pouring velocity by 10 percent leads increasing of the molten metal velocity in the shot sleeve and requires a delay of time of the beginning of the faster plunger movement by 7–10.5 percent. On the other hand, Figure 12 shows that increasing the pouring velocity requires increasing of the plunger velocity during the injection phase, thus increasing the pouring velocity. In order to overcome this problem, it is necessary to reduce the injection velocity and prolong the period of the slower plunger movement.


2019 ◽  
Vol 177 (2) ◽  
pp. 103-107
Author(s):  
Stasys SLAVINSKAS ◽  
Gvidonas LABECKAS ◽  
Tomas MICKEVIČIUS

The paper presents the experimental test results of a common rail injection system operating with biodiesel and the diesel fuel. The three fuel split injection strategies were implemented to investigate the effects made by biodiesel and a fossil diesel fuel on the history of injector inlet pressure and the injection rate. In addition, the three intervals between split injections and the different injection pressures were used to obtain more information about the studied subjects. The obtained results showed that the peak mass injection rates of the main injection phase were slightly higher when using biodiesel than the respective values measured with the normal diesel fuel. Because the first injection phase activated the fuel pressure fluctuations along the high-pressure line and in front of the injector, the time-span between injections has an impact on the injector inlet pressure and thus the fuel injection rate during the second injection phase. Since the nozzle closes little later for biodiesel, the injector inlet pressure also occurred latter in the cycle.


Author(s):  
Reshma Anamari Mohandas ◽  
Lalitha Ponnampalam ◽  
Lianhe H. Li ◽  
Cyril C. Renaud ◽  
Alwyn J. Seeds ◽  
...  

Particles ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 32-43
Author(s):  
Sikharin Suphakul ◽  
Heishun Zen ◽  
Toshiteru Kii ◽  
Hideaki Ohgaki

A magnetic chicane bunch compressor for a new compact accelerator-based terahertz (THz) radiation source at the Institute of Advanced Energy, Kyoto University, was completely installed in March 2016. The chicane is employed to compress an electron bunch with an energy of 4.6 MeV generated by a 1.6-cell photocathode radio frequency (RF)-gun. The compressed bunch is injected into a short planar undulator for THz generation by coherent undulator radiation (CUR). The characteristics of the bunch compressor and the compressed bunch were investigated by observing the coherent transition radiation (CTR). The CTR spectra, which were analyzed by using a Michelson interferometer, and the compressed bunch length were also estimated. The results were that the chicane could compress the electron bunch at a laser injection phase less than 45 degrees, and the maximum CTR intensity was observed at a laser injection phase around 24 degrees. The optimum value of the first momentum compaction factor was around −45 mm, which provided an estimated rms bunch length less than 1 ps.


Sign in / Sign up

Export Citation Format

Share Document