scholarly journals Intensive landscape-scale remediation improves water quality of an alluvial gully located in a Great Barrier Reef catchment

2021 ◽  
Vol 25 (2) ◽  
pp. 867-883
Author(s):  
Nicholas J. C. Doriean ◽  
William W. Bennett ◽  
John R. Spencer ◽  
Alexandra Garzon-Garcia ◽  
Joanne M. Burton ◽  
...  

Abstract. Gully erosion can be a major disruptor to global fluvial sediment budgets. Gully erosion in the catchments of the Great Barrier Reef is attributed to ∼40 % of fine suspended sediment pollution to the freshwater and marine ecosystems downstream. Mitigating this source of erosion will have a lasting positive impact on the water quality of connected rivers and the receiving marine environment. Here we conduct a preliminary evaluation of the ability of intensive landscape-scale gully remediation to reduce suspended sediment and associated nutrient export from a catchment draining to the Great Barrier Reef. The gully remediation method was a first attempt, in the region, at investing a high level of financial (total cost of remediation AUD ∼90 000) and logistical effort (e.g. intensive earthworks, including the establishment of an on-site quarry) to develop long-lasting erosion mitigation measures (i.e. regraded, compacted, and battered gully walls, rock armouring of banks and channel, and installation of rock check dams). A novel suspended sediment monitoring network, comprised of a suite of new and established automated monitoring methods capable of operating in remote environments, was used to evaluate the water quality of a remediated gully, a control gully, and their respective catchments. The recently developed pumped active suspended sediment (PASS) sampler optimised to sample ephemeral water flows was deployed in gully outlets and catchment runoff flow paths. This study demonstrates how the combination of low- and high-cost water quality monitoring techniques can be deployed in a configuration that ensures sample collection redundancy and complementary data collection between methods. Monitoring was conducted during two consecutive wet seasons and, thus, can only provide preliminary information. Monitoring over longer timescales (i.e. 5–10 years) will need to be carried out in order to validate the findings discussed herein. Samples collected from the remediated gully had significantly lower suspended sediment concentrations compared to the control gully, providing preliminary evidence that the remediation works were successful in stabilising erosion within the gully. Dissolved and particulate nutrient concentrations were also significantly lower in the remediated gully samples, consistent with the decreased suspended sediment concentrations. The novel combination of suspended sediment measurements from both the gully channels and overland flows in the surrounding gully catchments suggests that sediment and nutrients at the remediated site are likely sourced from erosion processes occurring within the catchment of the gully (at relatively low concentrations). In contrast, the primary source of suspended sediment and associated nutrients at the control gully was erosion from within the gully itself. This study demonstrates the potential of landscape-scale remediation as an effective mitigation action for reducing suspended sediment and nutrient export from alluvial gullies. It also provides a useful case study for the monitoring effort required to appropriately assess the effectiveness of this type of erosion control.

2020 ◽  
Author(s):  
Nicholas J. C. Doriean ◽  
William W. Bennett ◽  
John R. Spencer ◽  
Alexandra Garzon-Garcia ◽  
Joanne M. Burton ◽  
...  

Abstract. Gully erosion is a major source (~ 40 %) of fine suspended sediment pollution to the Great Barrier Reef. Mitigating this source of erosion will have a lasting positive impact on the water quality of downstream rivers and the receiving marine environment. Here we conduct a preliminary evaluation of the ability of intensive landscape-scale gully remediation to reduce suspended sediment and associated nutrient export from a catchment draining to the Great Barrier Reef. A novel suspended sediment monitoring network, comprised of a suite of new and established automated monitoring methods capable of operating in remote environments, was used to evaluate the water quality of a remediated gully, a control gully and their respective catchments. Suspended sediment concentrations were ~ 80 % lower at the remediated site compared to the control site, indicating the remediation works were successful in stabilising the erosion within the gully. Dissolved and particulate nutrient concentrations were also significantly lower at the remediated site, consistent with the decreased sediment concentrations. The novel combination of suspended sediment measurements from both the gully channels and overland flows in the surrounding gully catchments suggests that sediment and nutrients at the remediated site are likely sourced from erosion processes occurring within the catchment of the gully (at relatively low concentrations). In contrast, the primary source of suspended sediment and associated nutrients at the control site was erosion from within the gully itself. This study demonstrates the potential of landscape-scale remediation as an effective mitigation action for reducing suspended sediment and nutrient export from alluvial gullies. It also provides a useful case study for the monitoring effort required to appropriately assess the effectiveness of this type of erosion control.


1989 ◽  
Vol 21 (2) ◽  
pp. 31-38 ◽  
Author(s):  
Simon Woodley

The Great Barrier Reef is the largest coral reef system in the world. It is recognised and appreciated worldwide as a unique environment and for this reason has been inscribed on the World Heritage List. The Reef is economically-important to Queensland and Australia, supporting substantial tourism and fishing industries. Management of the Great Barrier Reef to ensure conservation of its natural qualities in perpetuity is achieved through the establishment of the Great Barrier Reef Marine Park. The maintenance of water quality to protect the reef and the industries which depend on it is becoming an increasingly important management issue requiring better knowledge and possibly new standards of treatment and discharge.


2021 ◽  
Vol 167 ◽  
pp. 112373
Author(s):  
Nathan J. Waltham ◽  
Carla Wegscheidl ◽  
Adrian Volders ◽  
James C.R. Smart ◽  
Syezlin Hasan ◽  
...  

2012 ◽  
Vol 65 (4-9) ◽  
pp. 249-260 ◽  
Author(s):  
Britta Schaffelke ◽  
John Carleton ◽  
Michele Skuza ◽  
Irena Zagorskis ◽  
Miles J. Furnas

Author(s):  
Woodruff Miller

This study is the continuation of an evaluation of the trophic state of lakes located in Grand Teton National Park, Wyoming. The original 1995 study was motivated by concern that the water quality of the lakes within the Park may be declining due to increased human usage over the past several years. A trophic state evaluation, featuring nutrient and chlorophyll-a analyses, was chosen because it is believed to be a sound indicator of the lakes' overall water quality. In this 1996 study, a thorough evaluation was made of Jackson Lake. This summary is taken from the complete 100 page report which is available from Woodruff Miller at Brigham Young University or Hank Harlow at the University of Wyoming. In most cases water samples were taken four times during the summer of 1996, in June, July, August, and October. Jackson Lake was sampled at eight different locations on thesurface and at depths near the bottom. The lake inlet and outlet were also sampled four times. Jackson Lake was sampled from a motor boat which also provided a means to measure the lake transparency and depth. The chlorophyll-a and nutrient concentrations were analyzed by the Utah State Health Department, Division of Laboratory Services. Jackson Lake was evaluated using the models of Carlson, Vollenweider, and Larsen­Mercier. The nature of the Larsen-Mercier and Vollenweider models, based on system inflow and outflow data, is such that they yield one trophic state assessment of the lake per inflow and outflow sample set. The Carlson Trophic State Indices (TSI), on the other hand, are based on in situ properties of the water at any point in the lake. Consequently, while there are four Vollenweider and four Larsen-Mercier evaluations for Jackson Lake, individual Carlson evaluations were made for the eight sample sites around the lake at the surface and at depth, and an evaluation for the lake as a whole was constructed using averages taken from the site evaluations. This allowed us to examine the relative water quality of different portions of the lake at different time periods.


Sign in / Sign up

Export Citation Format

Share Document