scholarly journals NETWORK MODELLING AND SEMANTIC 3D CITY MODELS: TESTING THE MATURITY OF THE UTILITY NETWORK ADE FOR CITYGML WITH A WATER NETWORK TEST CASE

Author(s):  
I. Boates ◽  
G. Agugiaro ◽  
A. Nichersu

<p><strong>Abstract.</strong> Recent advances in semantic 3D city modelling and a demand from utility network operators for multi-utility data models integration have contributed to the emergence of an open Application Domain Extension (ADE) of the CityGML data model tailored to multiple types of utility networks. This extension, called the Utility Network ADE, is still in active development. However, work is already well underway to create data samples and to develop methods of modelling thereupon. In this paper, a mapping of the Utility Network ADE data model to a relational database schema is introduced. A sample of a freshwater network using the Utility Network ADE and based on data from the city of Nanaimo, Canada, is also presented. This sample has also been imported into a relational database schema built upon the 3DCityDB (a database implementation of CityGML) extended with a schema of the Utility Network ADE. Further to this, a series of basic network analysis functions have been defined and implemented in SQL to interact with the database so as to carry out sample atomic processes involved in network modelling, such as reading semantic properties of elements, calculating composite physical parameters of the network as a whole, and performing simple topological routing to serve as a guiding example for further and more complex development. A brief outlook is also presented, suggesting areas with high potential for future research and development of this nascent data model.</p>

Author(s):  
Imants Zarembo

<p class="R-AbstractKeywords"><span lang="EN-US">Ontology alignment, or ontology matching, is a technique to map different concepts between ontologies. For this purpose at least two ontologies are required. In certain scenarios, such as data integration, heterogeneous database integration and data model compatibility evaluation, a need to transform a relational database schema to an ontology can arise. </span></p><p class="R-AbstractKeywords"><span lang="EN-US">To conduct a successful transformation it is necessary to identify the differences between relational database schema and ontology information representation methods, and then to define transformation rules. The most straight forward but time consuming way to carry out transformation is to do it manually. Often this is not an option due to the size of data to be transformed. For this reason there is a need for an automated solution.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">The automatic transformation of OWL ontology from relational database schema is presented in this paper; the data representation differences between relational database schema and OWL ontologies are described; the transformation rules are defined and the transformation tool’s prototype is developed to perform the described transformation.</span></p>


Author(s):  
I Gede Winaya ◽  
Ahmad Ashari

            MongoDB is a database that uses document-oriented data storage models. In fact, to  migrate from a relational database to NoSQL databases such as MongoDB is not an easy matter especially if the data are extremely complex. Based on the documentation that has been done by several global companies related to the use of MongoDB, it can be concluded that the process of migration from RDBMS to MongoDB require quite a long time. One process that takes quite a lot is transformation of relational database schema into a document-oriented data model on MongoDB.            This research discusses the development transformation system of relational database schema to the document oriented data model in MongoDB. The process of transformation is done by utilizing the structure and relationships between tables in the scheme as the main parameters of the modeling algorithm. In the process of the modeling documents, it necessary to adjustments the specifications of MongoDB document that formed document model can be implemented in MongoDB.            Document models are formed from transformation process can be a single document, embedded document, referenced document or combination of these. Document models are formed depending on the type, rules, and the value of the relationships cardinality between tables in the relational database schema.


Author(s):  
Abad Shah ◽  
Jacob Adeniyi ◽  
Tariq Al Tuwairqi

The Web and XML have influenced all walks of lives of those who transact business over the Internet. People like to do their transactions from their homes to save time and money. For example, customers like to pay their utility bills and other banking transactions from their homes through the Internet. Most companies, including banks, maintain their records using relational database technology. But the traditional relational database technology is unable to provide all these new facilities to the customers. To make the traditional relational database technology cope with the Web and XML technologies, we need a transformation between the XML technology and the relational database technology as middleware. In this chapter, we present a new and simpler algorithm for this purpose. This algorithm transforms a schema of a XML document into a relational database schema, taking into consideration the requirement of relational database technology.


Sign in / Sign up

Export Citation Format

Share Document