scholarly journals SCENE CLASSIFICATION BASED ON THE INTRINSIC MEAN OF LIE GROUP

Author(s):  
C. Xu ◽  
G. Zhu ◽  
K. Yang

Abstract. Remote Sensing scene classification aims to identify semantic objects with similar characteristics from high resolution images. Even though existing methods have achieved satisfactory performance, the features used for classification modeling are still limited to some kinds of vector representation within a Euclidean space. As a result, their models are not robust to reflect the essential scene characteristics, hardly to promote classification accuracy higher. In this study, we propose a novel scene classification method based on the intrinsic mean on a Lie Group manifold. By introducing Lie Group machine learning into scene classification, the new method uses the geodesic distance on the Lie Group manifold, instead of Euclidean distance, solving the problem that non-euclidean space samples could not be calculated by Euclidean distance directly. The experiments show that our method produces satisfactory performance on two public and challenging remote sensing scene datasets, UC Merced and SIRI-WHU, respectively.

Research on Scene classification of remotely sensed images has shown a significant improvement in the recent years as it is used in various applications such as urban planning, urban mapping, management of natural resources, precision agriculture, detecting targets etc. The recent advancement of intelligent earth observation system has led to the generation of high resolution remote sensing images in terms of spatial, spectral and temporal resolutions which in turn helped the researchers to improve the performance of Land Use Land Class (LULC) Classification Techniques to a higher level. With the usage of different deep learning architecture and the availability of various high resolution image datasets, the field of Remote Sensing Scene Classification of high resolution (RSSCHR) images has shown tremendous improvement in the past decade. In this paper we present the different publicly available datasets , various scene classification methods and the future research scope of remotely sensed high resolution images.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1117
Author(s):  
Wenxu Gao ◽  
Zhengming Ma ◽  
Weichao Gan ◽  
Shuyu Liu

Symmetric positive definite (SPD) data have become a hot topic in machine learning. Instead of a linear Euclidean space, SPD data generally lie on a nonlinear Riemannian manifold. To get over the problems caused by the high data dimensionality, dimensionality reduction (DR) is a key subject for SPD data, where bilinear transformation plays a vital role. Because linear operations are not supported in nonlinear spaces such as Riemannian manifolds, directly performing Euclidean DR methods on SPD matrices is inadequate and difficult in complex models and optimization. An SPD data DR method based on Riemannian manifold tangent spaces and global isometry (RMTSISOM-SPDDR) is proposed in this research. The main contributions are listed: (1) Any Riemannian manifold tangent space is a Hilbert space isomorphic to a Euclidean space. Particularly for SPD manifolds, tangent spaces consist of symmetric matrices, which can greatly preserve the form and attributes of original SPD data. For this reason, RMTSISOM-SPDDR transfers the bilinear transformation from manifolds to tangent spaces. (2) By log transformation, original SPD data are mapped to the tangent space at the identity matrix under the affine invariant Riemannian metric (AIRM). In this way, the geodesic distance between original data and the identity matrix is equal to the Euclidean distance between corresponding tangent vector and the origin. (3) The bilinear transformation is further determined by the isometric criterion guaranteeing the geodesic distance on high-dimensional SPD manifold as close as possible to the Euclidean distance in the tangent space of low-dimensional SPD manifold. Then, we use it for the DR of original SPD data. Experiments on five commonly used datasets show that RMTSISOM-SPDDR is superior to five advanced SPD data DR algorithms.


2020 ◽  
Vol 381 ◽  
pp. 298-305 ◽  
Author(s):  
Xuning Liu ◽  
Yong Zhou ◽  
Jiaqi Zhao ◽  
Rui Yao ◽  
Bing Liu ◽  
...  

2020 ◽  
Vol 17 (6) ◽  
pp. 968-972 ◽  
Author(s):  
Tianyu Wei ◽  
Jue Wang ◽  
Wenchao Liu ◽  
He Chen ◽  
Hao Shi

Sign in / Sign up

Export Citation Format

Share Document