joint representation
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 60)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Αθανάσιος Δαββέτας

Τα τελευταία χρόνια, η διαδικασία συλλογής ολοένα και περισσότερων δεδομένων έχει ως αποτέλεσμα την ύπαρξη πληθώρας δεδομένων. Μετά τη διερεύνηση αποτελεσματικών τρόπων αποθήκευσης, διαχείρισης και συλλογής δεδομένων μεγάλης κλίμακας ή ποικίλων τύπων, το ερευνητικό ενδιαφέρον της επιστημονικής κοινότητας μετατοπίστηκε στην εξαγωγή πληροφορίας από τέτοιου είδους συλλογές. Η βαθιά μάθηση (deep learning) χρησιμοποιείται συχνά για τη διαδικασία εξαγωγής πολύτιμης πληροφορίας. Οι μέθοδοι βαθιάς μάθησης ευδοκιμούν με σύνολα δεδομένων μεγάλης κλίμακας, λόγω της ικανότητάς τους να μαθαίνουν εναλλακτικές αναπαραστάσεις από ακατέργαστες παρατηρήσεις. Η διαθέσιμη πληθώρα δεδομένων επιτρέπει την εκμάθηση γενικευμένων αναπαραστάσεων. Με τη σειρά τους, οι γενικευμένες αναπαραστάσεις επιτρέπουν την αποτελεσματική εκμάθηση πολύπλοκων εργασιών. Παρά τις επιτυχείς προσπάθειες για την εξαγωγή πληροφοριών από μεμονωμένες πηγές δεδομένων ή τύπους δεδομένων, η αντιμετώπιση πολλαπλών διαφορετικών πηγών δεδομένων παραμένει ένα ανοιχτό ερώτημα στην επιστημονική κοινότητα. Η εκμάθηση αναπαραστάσεων (representation learning) επιτρέπει τον συνδυασμό και την αντιπαράθεση πολλαπλών διαφορετικών πηγών δεδομένων σε έναν χώρο κοινό, ουσιαστικό και χαμηλότερων διαστάσεων. Ωστόσο, τα τυπικά πλαίσια μάθησης για κοινή εκμάθηση αναπαραστάσεων (joint representation learning) πρέπει να αντιμετωπίσουν μια πληθώρα προκλήσεων. Αρχικά, οι αρχιτεκτονικές αποφάσεις των εμπλεκόμενων νευρωνικών δικτύων είναι συχνά προϊόντα προερχόμενα από διαδικασίες ή αποφάσεις που εμπλέκουν ανθρώπινη παρέμβαση (μη αυτόματες). Οι συγκεκριμένες διαδικασίες ή αποφάσεις συνήθως αφορούν συγκεκριμένες εφαρμογές και σπάνια γενικεύονται σε πολλαπλούς τομείς ή εργασίες. Ταυτόχρονα, η απευθείας σύνδεση πηγών δεδομένων στα επίπεδα εισόδου του νευρωνικού δικτύου εισάγει μια προσδοκία σταθερής διαθεσιμότητας. Ωστόσο, σε πραγματικές εφαρμογές, η προσδοκία διαθεσιμότητας όλων των πηγών δεδομένων δεν είναι ρεαλιστική. Επιπλέον, η επίδοση των τυπικών πλαισίων μάθησης μπορεί να μειωθεί κατά τη χρήση περιττών ή μη συμπληρωματικών πηγών δεδομένων. Η αντιμετώπιση μια τέτοιας συμπεριφοράς, επίσης απαιτεί τη χρήση μη-αυτόματων διαδικασιών. Η χειρωνακτική εργασία που καταβάλλεται, σκοπεύει στη δημιουργία συγκεκριμένων υποθέσεων ή κανόνων που θα διασφαλίζουν τη σταθερότητα ή στην κατανόηση των περίπλοκων σχέσεων μεταξύ των πηγών δεδομένων, προκειμένου να αποφευχθούν οι μη συμπληρωματικές σχέσεις. Σε αυτή τη διατριβή, διερευνάται η υπόθεση ότι η χρήση εξωτερικών δεδομένων βελτιώνει την εκμάθηση αναπαραστάσεων. Η παραπάνω έρευνα καταλήγει στην πρόταση μιας μεθόδου εκμάθησης αναπαραστάσεων, που ονομάζεται Evidence Transfer (EviTraN). Η EviTraN είναι ένα ευέλικτο και αυτοματοποιημένο σχήμα σύντηξης πληροφορίας (information fusion) που βασίζεται στην εκμάθηση αναπαραστάσεων, τη μεταφορά μάθησης (transfer learning) και την υβριδική μοντελοποίηση (hybrid modelling). Επιπλέον, προτείνεται μια σειρά κριτηρίων αξιολόγησης για την εκμάθηση αναπαραστάσεων για τους σκοπούς της σύντηξης πληροφοριών. Ακόμα, η διατριβή περιλαμβάνει μια θεωρητική ερμηνεία της παραπάνω μεθόδου, βασισμένη στη σύγκριση με τη μέθοδο Information Bottleneck, η οποία αποτελεί θεμέλιο λίθο για επεξηγηματική μοντελοποίηση και ανοιχτή επιστήμη. Η διαδικασία αξιολόγησης της EviTraN περιλαμβάνει επίσης ένα ρεαλιστικό σενάριο ανίχνευσης έντονων καιρικών συνθηκών χωρίς επίβλεψη, αποδεικνύοντας έτσι τον αντίκτυπό της, καθώς και την πιθανή χρήση της σε πρόσθετες πραγματικές εφαρμογές. Η πειραματική αξιολόγηση με τεχνητά παραγόμενες, καθώς και ρεαλιστικές πηγές πληροφορίας υποδηλώνει ότι η EviTraN είναι μια σταθερή και αποτελεσματική μέθοδος. Επιπλέον, είναι ευέλικτη, καθώς επιτρέπει την εισαγωγή ποικίλων σχέσεων, συμπεριλαμβανομένων των μη συμπληρωματικών. Ακόμα, λόγω της διαδικασίας εκμάθησής της που βασίζεται στη μεταφορά εκμάθησης (transfer learning), είναι ένα αρθρωτό σχήμα σύντηξης που δεν απαιτεί να υπάρχουν όλες οι πηγές δεδομένων κατά την εξαγωγή συμπερασμάτων (μόνο δεδομένα που ανήκουν στην κύρια συλλογή δεδομένων).


Author(s):  
Stefania D’Ascenzo ◽  
Martin H. Fischer ◽  
Samuel Shaki ◽  
Luisa Lugli

AbstractRecent work has shown that number concepts activate both spatial and magnitude representations. According to the social co-representation literature which has shown that participants typically represent task components assigned to others together with their own, we asked whether explicit magnitude meaning and explicit spatial coding must be present in a single mind, or can be distributed across two minds, to generate a spatial-numerical congruency effect. In a shared go/no-go task that eliminated peripheral spatial codes, we assigned explicit magnitude processing to participants and spatial processing to either human or non-human co-agents. The spatial-numerical congruency effect emerged only with human co-agents. We demonstrate an inter-personal level of conceptual congruency between space and number that arises from a shared conceptual representation not contaminated by peripheral spatial codes. Theoretical implications of this finding for numerical cognition are discussed.


Author(s):  
Nerea González-García ◽  
Ana Belén Nieto-Librero ◽  
Purificación Galindo-Villardón

AbstractIn this work, a new mathematical algorithm for sparse and orthogonal constrained biplots, called CenetBiplots, is proposed. Biplots provide a joint representation of observations and variables of a multidimensional matrix in the same reference system. In this subspace the relationships between them can be interpreted in terms of geometric elements. CenetBiplots projects a matrix onto a low-dimensional space generated simultaneously by sparse and orthogonal principal components. Sparsity is desired to select variables automatically, and orthogonality is necessary to keep the geometrical properties that ensure the biplots graphical interpretation. To this purpose, the present study focuses on two different objectives: 1) the extension of constrained singular value decomposition to incorporate an elastic net sparse constraint (CenetSVD), and 2) the implementation of CenetBiplots using CenetSVD. The usefulness of the proposed methodologies for analysing high-dimensional and low-dimensional matrices is shown. Our method is implemented in R software and available for download from https://github.com/ananieto/SparseCenetMA.


Neuron ◽  
2021 ◽  
Author(s):  
Hsin-Hung Li ◽  
Thomas C. Sprague ◽  
Aspen H. Yoo ◽  
Wei Ji Ma ◽  
Clayton E. Curtis

Author(s):  
Hervé Goëau ◽  
Pierre Bonnet ◽  
Alexis Joly

Automated plant identification has recently improved significantly due to advances in deep learning and the availability of large amounts of field photos. As an illustration, the classification accuracy of 10K species measured in the LifeCLEF challenge (Goëau et al. 2018) reached 90%, very close to that of human experts. However, the profusion of field images only concerns a few tens of thousands of species, mainly located in North America and Western Europe. Conversely, the richest regions in terms of biodiversity, such as tropical countries, suffer from a shortage of training data (Pitman 2021). Consequently, the identification performance of the most advanced models on the flora of these regions is much lower (Goëau et al. 2019). Nevertheless, for several centuries, botanists have systematically collected, catalogued, and stored plant specimens in herbaria. Considerable recent efforts by the biodiversity informatics community, such as DiSSCo (Addink et al. 2018) and iDigBio (Matsunaga et al. 2013), have made millions of digitized specimens from these collections available online. A key question is therefore whether these digitized specimens could be used to improve the identification performance of species for which we have very few (if any) photos. However, this is a very difficult problem from a machine learning point of view. The visual appearance of a herbarium specimen is actually very different from a field photograph because the specimens are dried and crushed on a herbarium sheet before being digitized (Fig. 1). To advance research on this topic, we built a large dataset that we shared as one of the challenges of the LifeCLEF 2020 (Goëau et al. 2020) and 2021 evaluation campaigns (Goëau et al. 2021). It includes more than 320K herbarium specimens collected mostly from the Guiana Shield and the Northern Amazon Rainforest, focusing on about 1K plant species of the French Guiana flora. A valuable asset of this collection is that some of the specimens are accompanied by a few photos of the same specimen, allowing for more precise machine learning. In addition to this training data, we also built a test set for model evaluation, composed of 3,186 field photos collected by two of the best experts on Guyanese flora. Based on this dataset, about ten research teams have developed deep learning methods to address the challenge (including the authors of this abstract as the organizing team). A detailed description of these methods can be found in the technical notes written by the participating teams (Goëau et al. 2020, Goëau et al. 2021). The methods can be divided into two categories: those based on classical convolutional neural networks (CNN) trained simply by mixing digitized specimens and photos and those based on advanced domain adaptation techniques with the objective of learning a joint representation space between field and herbarium representations. those based on classical convolutional neural networks (CNN) trained simply by mixing digitized specimens and photos and those based on advanced domain adaptation techniques with the objective of learning a joint representation space between field and herbarium representations. The domain adaptation methods themselves were of two types, those based on adversarial regularization (Motiian et al. 2017) to force herbarium specimens and photos to have the same representations, metric learning to maximize inter-species distances and minimize intra-species distances in the representation space adversarial regularization (Motiian et al. 2017) to force herbarium specimens and photos to have the same representations, metric learning to maximize inter-species distances and minimize intra-species distances in the representation space In Table 1, we report the results achieved by the different methods evaluated during the 2020 edition of the challenge. The evaluation metric used is the mean reciprocal rank (MRR), i.e., the average of the inverse of the rank of the correct species in the list of the predicted species. In addition to this main score, a second MRR score is computed on a subset of the test set composed of the most difficult species, i.e., the ones that are the least frequently photographed in the field. The main outcomes we can derive from these results are the following: Classical deep learning models fail to identify plant photos from digitized herbarium specimens. The best classical CNN trained on the provided data resulted in a very low MRR score (0.011). Even with the of use additional training data (e.g. photos and digitized herbarium from GBIF) the MRR score remains very low (0.039). Domain adaptation methods provide significant improvement but the task remains challenging. The best MRR score (0.180) was achieved by using adversarial regularization (FSDA Motiian et al. 2017). This is much better than the classical CNN models but there is still a lot of progress to be made to reach the performance of a truly functional identification system (the MRR score on classical plant identification tasks can be up to 0.9). No method fits all. As shown in Table 1, the metric learning method has a significantly better MRR score on the most difficult species (0.107). However, the performance of this method on the species with more photos is much lower than the adversarial technique. In 2021, the challenge was run again but with additional information provided to train the models, i.e., species traits (plant life form, woodiness and plant growth form). The use of the species traits allowed slight performance improvement of the best adversarial adaptation method (with a MRR equal to 0.198). In conclusion, the results of the experiments conducted are promising and demonstrate the potential interest of digitized herbarium data for automated plant identification. However, progress is still needed before integrating this type of approach into production applications.


Author(s):  
Han Zhao ◽  
Xu Yang ◽  
Zhenru Wang ◽  
Erkun Yang ◽  
Cheng Deng

By contrasting positive-negative counterparts, graph contrastive learning has become a prominent technique for unsupervised graph representation learning. However, existing methods fail to consider the class information and will introduce false-negative samples in the random negative sampling, causing poor performance. To this end, we propose a graph debiased contrastive learning framework, which can jointly perform representation learning and clustering. Specifically, representations can be optimized by aligning with clustered class information, and simultaneously, the optimized representations can promote clustering, leading to more powerful representations and clustering results. More importantly, we randomly select negative samples from the clusters which are different from the positive sample's cluster. In this way, as the supervisory signals, the clustering results can be utilized to effectively decrease the false-negative samples. Extensive experiments on five datasets demonstrate that our method achieves new state-of-the-art results on graph clustering and classification tasks.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253442
Author(s):  
JohnMark Taylor ◽  
Yaoda Xu

To interact with real-world objects, any effective visual system must jointly code the unique features defining each object. Despite decades of neuroscience research, we still lack a firm grasp on how the primate brain binds visual features. Here we apply a novel network-based stimulus-rich representational similarity approach to study color and form binding in five convolutional neural networks (CNNs) with varying architecture, depth, and presence/absence of recurrent processing. All CNNs showed near-orthogonal color and form processing in early layers, but increasingly interactive feature coding in higher layers, with this effect being much stronger for networks trained for object classification than untrained networks. These results characterize for the first time how multiple basic visual features are coded together in CNNs. The approach developed here can be easily implemented to characterize whether a similar coding scheme may serve as a viable solution to the binding problem in the primate brain.


2021 ◽  
Author(s):  
Junho Koh ◽  
Jaekyum Kim ◽  
Younji Shin ◽  
Byeongwon Lee ◽  
Seungji Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document