scholarly journals PRECISION ANALYSIS OF POINT-AND-SCALE PHOTOGRAMMETRIC MEASUREMENTS FOR CORRIDOR MAPPING: PRELIMINARY RESULTS

Author(s):  
P. Molina ◽  
M. Blázquez ◽  
J. Sastre ◽  
I. Colomina

This paper addresses the key aspects of the sensor orientation and calibration approach within the mapKITE concept for corridor mapping, focusing on the contribution analysis of point-and-scale measurements of kinematic ground control points. MapKITE is a new mobile, simultaneous terrestrial and aerial, geodata acquisition and post-processing method. On one hand, the acquisition system is a tandem composed of a terrestrial mobile mapping system and an unmanned aerial system, the latter equipped with a remote sensing payload, and linked through a 'virtual tether', that is, a real-time waypoint supply from the terrestrial vehicle to the unmanned aircraft. On the other hand, mapKITE entails a method for geodata post-processing (specifically, sensor orientation and calibration) based on the described acquisition paradigm, focusing on few key aspects: the particular geometric relationship of a mapKITE network &ndash; the aerial vehicle always observes the terrestrial one as they both move &ndash;, precise air and ground trajectory determination &ndash; the terrestrial vehicle is regarded as a kinematic ground control point &ndash; and new photogrammetric measurements &ndash; pointing on and measuring the scale of an optical target on the roof of the terrestrial vehicle &ndash; are exploited. <br><br> In this paper, we analyze the performance of aerial image orientation and calibration in mapKITE for corridor mapping, which is the natural application niche of mapKITE, based on the principles and procedures of integrated sensor orientation with the addition of point-and-scale photogrammetric measurements of the kinematic ground control points. To do so, traditional (static ground control points, photogrammetric tie points, aerial control) and new (pointing-and-scaling of kinematic ground control points) measurements have been simulated for mapKITE corridor mapping missions, consisting on takeoff and calibration pattern, single-pass corridor operation potentially performing calibration patterns, and landing and calibration pattern. Our preliminary results show that the exterior orientation, interior orientation and tie points precision estimates are better when using kinematic control with few static ground control, and even with excluding the latter. We conclude then that mapKITE can be a breakthrough on the UAS-based corridor mapping field, as precision requirements can be achieved for single-pass operation with no need for traditional static ground control points.

Author(s):  
P. Molina ◽  
M. Blázquez ◽  
J. Sastre ◽  
I. Colomina

This paper addresses the key aspects of the sensor orientation and calibration approach within the mapKITE concept for corridor mapping, focusing on the contribution analysis of point-and-scale measurements of kinematic ground control points. MapKITE is a new mobile, simultaneous terrestrial and aerial, geodata acquisition and post-processing method. On one hand, the acquisition system is a tandem composed of a terrestrial mobile mapping system and an unmanned aerial system, the latter equipped with a remote sensing payload, and linked through a 'virtual tether', that is, a real-time waypoint supply from the terrestrial vehicle to the unmanned aircraft. On the other hand, mapKITE entails a method for geodata post-processing (specifically, sensor orientation and calibration) based on the described acquisition paradigm, focusing on few key aspects: the particular geometric relationship of a mapKITE network &ndash; the aerial vehicle always observes the terrestrial one as they both move &ndash;, precise air and ground trajectory determination &ndash; the terrestrial vehicle is regarded as a kinematic ground control point &ndash; and new photogrammetric measurements &ndash; pointing on and measuring the scale of an optical target on the roof of the terrestrial vehicle &ndash; are exploited. &lt;br&gt;&lt;br&gt; In this paper, we analyze the performance of aerial image orientation and calibration in mapKITE for corridor mapping, which is the natural application niche of mapKITE, based on the principles and procedures of integrated sensor orientation with the addition of point-and-scale photogrammetric measurements of the kinematic ground control points. To do so, traditional (static ground control points, photogrammetric tie points, aerial control) and new (pointing-and-scaling of kinematic ground control points) measurements have been simulated for mapKITE corridor mapping missions, consisting on takeoff and calibration pattern, single-pass corridor operation potentially performing calibration patterns, and landing and calibration pattern. Our preliminary results show that the exterior orientation, interior orientation and tie points precision estimates are better when using kinematic control with few static ground control, and even with excluding the latter. We conclude then that mapKITE can be a breakthrough on the UAS-based corridor mapping field, as precision requirements can be achieved for single-pass operation with no need for traditional static ground control points.


Author(s):  
P. Molina ◽  
M. Blázquez ◽  
J. Sastre ◽  
I. Colomina

In this paper, we present mapKITE, a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method. On one side, the method combines a terrestrial mobile mapping system (TMMS) with an unmanned aerial mapping one, both equipped with remote sensing payloads (at least, a nadir-looking visible-band camera in the UA) by means of which aerial and terrestrial geodata are acquired simultaneously. This tandem geodata acquisition system is based on a terrestrial vehicle (TV) and on an unmanned aircraft (UA) linked by a 'virtual tether', that is, a mechanism based on the real-time supply of UA waypoints by the TV. By means of the TV-to-UA tether, the UA follows the TV keeping a specific relative TV-to-UA spatial configuration enabling the simultaneous operation of both systems to obtain highly redundant and complementary geodata. <br><br> On the other side, mapKITE presents a novel concept for geodata post-processing favoured by the rich geometrical aspects derived from the mapKITE tandem simultaneous operation. The approach followed for sensor orientation and calibration of the aerial images captured by the UA inherits the principles of Integrated Sensor Orientation (ISO) and adds the pointing-and-scaling photogrammetric measurement of a distinctive element observed in every UA image, which is a coded target mounted on the roof of the TV. By means of the TV navigation system, the orientation of the TV coded target is performed and used in the post-processing UA image orientation approach as a Kinematic Ground Control Point (KGCP). The geometric strength of a mapKITE ISO network is therefore high as it counts with the traditional tie point image measurements, static ground control points, kinematic aerial control and the new point-and-scale measurements of the KGCPs. With such a geometry, reliable system and sensor orientation and calibration and eventual further reduction of the number of traditional ground control points is feasible. <br><br> The different technical concepts, challenges and breakthroughs behind mapKITE are presented in this paper, such as the TV-to-UA virtual tether and the use of KGCP measurements for UA sensor orientation. In addition, the use in mapKITE of new European GNSS signals such as the Galileo E5 AltBOC is discussed. Because of the critical role of GNSS technologies and the potential impact on the corridor mapping market, the European Commission and the European GNSS Agency, in the frame of the European Union Framework Programme for Research and Innovation “Horizon 2020,” have recently awarded the “mapKITE” project to an international consortium of organizations coordinated by GeoNumerics S.L.


Author(s):  
P. Molina ◽  
M. Blázquez ◽  
J. Sastre ◽  
I. Colomina

We introduce a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method: mapKITE. By combining two mapping technologies such as terrestrial mobile mapping and unmanned aircraft aerial mapping, geodata are simultaneously acquired from air and ground. More in detail, a mapKITE geodata acquisition system consists on an unmanned aircraft and a terrestrial vehicle, which hosts the ground control station. By means of a real-time navigation system on the terrestrial vehicle, real-time waypoints are sent to the aircraft from the ground. By doing so, the aircraft is linked to the terrestrial vehicle through a “virtual tether,” acting as a “mapping kite.” <br><br> In the article, we entail the concept of mapKITE as well as the various technologies and techniques involved, from aircraft guidance and navigation based on IMU and GNSS, optical cameras for mapping and tracking, sensor orientation and calibration, etc. Moreover, we report of a new measurement introduced in mapKITE, that is, point-and-scale photogrammetric measurements [of image coordinates and scale] for optical targets of known size installed on the ground vehicle roof. By means of accurate posteriori trajectory determination of the terrestrial vehicle, mapKITE benefits then from kinematic ground control points which are photogrametrically observed by point-and-scale measures. <br><br> Initial results for simulated configurations show that these measurements added to the usual Integrated Sensor Orientation ones reduce or even eliminate the need of conventional ground control points –therefore, lowering mission costs– and enable selfcalibration of the unmanned aircraft interior orientation parameters in corridor configurations, in contrast to the situation of traditional corridor configurations. <br><br> Finally, we report about current developments of the first mapKITE prototype, developed under the European Union Research and Innovation programme Horizon 2020. The first mapKITE mission will be held at the BCN Drone Center (Collsuspina, Moià, Spain) in mid 2016.


Author(s):  
P. Molina ◽  
M. Blázquez ◽  
J. Sastre ◽  
I. Colomina

We introduce a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method: mapKITE. By combining two mapping technologies such as terrestrial mobile mapping and unmanned aircraft aerial mapping, geodata are simultaneously acquired from air and ground. More in detail, a mapKITE geodata acquisition system consists on an unmanned aircraft and a terrestrial vehicle, which hosts the ground control station. By means of a real-time navigation system on the terrestrial vehicle, real-time waypoints are sent to the aircraft from the ground. By doing so, the aircraft is linked to the terrestrial vehicle through a “virtual tether,” acting as a “mapping kite.” &lt;br&gt;&lt;br&gt; In the article, we entail the concept of mapKITE as well as the various technologies and techniques involved, from aircraft guidance and navigation based on IMU and GNSS, optical cameras for mapping and tracking, sensor orientation and calibration, etc. Moreover, we report of a new measurement introduced in mapKITE, that is, point-and-scale photogrammetric measurements [of image coordinates and scale] for optical targets of known size installed on the ground vehicle roof. By means of accurate posteriori trajectory determination of the terrestrial vehicle, mapKITE benefits then from kinematic ground control points which are photogrametrically observed by point-and-scale measures. &lt;br&gt;&lt;br&gt; Initial results for simulated configurations show that these measurements added to the usual Integrated Sensor Orientation ones reduce or even eliminate the need of conventional ground control points –therefore, lowering mission costs– and enable selfcalibration of the unmanned aircraft interior orientation parameters in corridor configurations, in contrast to the situation of traditional corridor configurations. &lt;br&gt;&lt;br&gt; Finally, we report about current developments of the first mapKITE prototype, developed under the European Union Research and Innovation programme Horizon 2020. The first mapKITE mission will be held at the BCN Drone Center (Collsuspina, Moià, Spain) in mid 2016.


2021 ◽  
Vol 62 (4) ◽  
pp. 38-47
Author(s):  
Long Quoc Nguyen ◽  

To evaluate the accuracy of the digital surface model (DSM) of an open-pit mine produced using photos captured by the unmanned aerial vehicle equipped with the post-processing dynamic satellite positioning technology (UAV/PPK), a DSM model of the Deo Nai open-pit coal mine was built in two cases: (1) only using images taken from UAV/PPK and (2) using images taken from UAV/PPK and ground control points (GCPs). These DSMs are evaluated in two ways: using checkpoints (CPs) and comparing the entire generated DSM with the DSM established by the electronic total station. The obtained results show that if using CPs, in case 1, the errors in horizontal and vertical dimension were 6.8 and 34.3 cm, respectively. When using two or more GCPs (case 2), the horizontal and vertical errors are at the centimetre-level (4.5 cm and 4.7 cm); if using the DSM comparison, the same accuracy as case 2 was also obtained.


Author(s):  
O. Mian ◽  
J. Lutes ◽  
G. Lipa ◽  
J. J. Hutton ◽  
E. Gavelle ◽  
...  

This paper presents results from a Direct Mapping Solution (DMS) comprised of an Applanix APX-15 UAV GNSS-Inertial system integrated with a Sony a7R camera to produce highly accurate ortho-rectified imagery without Ground Control Points on a Microdrones md4-1000 platform. A 55 millimeter Nikkor f/1.8 lens was mounted on the Sony a7R and the camera was then focused and calibrated terrestrially using the Applanix camera calibration facility, and then integrated with the APX-15 UAV GNSS-Inertial system using a custom mount specifically designed for UAV applications. <br><br> In July 2015, Applanix and Avyon carried out a test flight of this system. The goal of the test flight was to assess the performance of DMS APX-15 UAV direct georeferencing system on the md4-1000. The area mapped during the test was a 250 x 300 meter block in a rural setting in Ontario, Canada. Several ground control points are distributed within the test area. The test included 8 North-South lines and 1 cross strip flown at 80 meters AGL, resulting in a ~1 centimeter Ground Sample Distance (GSD). <br><br> Map products were generated from the test flight using Direct Georeferencing, and then compared for accuracy against the known positions of ground control points in the test area. The GNSS-Inertial data collected by the APX-15 UAV was post-processed in Single Base mode, using a base station located in the project area via POSPac UAV. The base-station’s position was precisely determined by processing a 12-hour session using the CSRS-PPP Post Processing service. The ground control points were surveyed in using differential GNSS post-processing techniques with respect to the base-station.


2019 ◽  
Vol 11 (11) ◽  
pp. 1352 ◽  
Author(s):  
Alphonse Nahon ◽  
Pere Molina ◽  
Marta Blázquez ◽  
Jennifer Simeon ◽  
Sylvain Capo ◽  
...  

Recurrent monitoring of sandy beaches and of the dunes behind them is needed to improve the scientific knowledge on their dynamics as well as to develop sustainable management practices of those valuable landforms. Unmanned Aircraft Systems (UAS) are sought as a means to fulfill this need, especially leveraged by photogrammetric and LiDAR-based mapping methods and technology. The present study compares different strategies to carry UAS photogrammetric corridor mapping over linear extensions of sandy shores. In particular, we present results on the coupling of a UAS with a mobile laser scanning system, operating simultaneously in Cap Ferret, SW France. This aerial-terrestrial tandem enables terrain reconstruction with kinematic ground control points, thus largely avoiding the deployment of surveyed ground control points on the non-stable sandy ground. Results show how these three techniques—mobile laser scanning, photogrammetry based on ground control points, and photogrammetry based on kinematic ground control points—deliver accurate (i.e., root mean square errors < 15 cm) 3D reconstruction of beach-to-dune transition areas, the latter being performed at lower survey and logistic costs, and with enhanced spatial coverage capabilities. This study opens the gate for exploring longer (hundreds of kilometers) shoreline dynamics with ground-control-point-free air and ground mapping techniques.


2018 ◽  
Vol 61 (6) ◽  
pp. 1823-1829 ◽  
Author(s):  
Alysa A. Gauci ◽  
Christian J. Brodbeck ◽  
Aurelie M. Poncet ◽  
Thorsten Knappenberger

Abstract. Recent development of small unmanned aircraft systems (UAS) provides a relatively low-cost solution to collect aerial imagery with very high spatial and temporal resolutions. The geospatial accuracy of collected data can range from a few centimeters to several meters, and the use of ground control points (GCPs) is recommended to correct for large geospatial errors. However, whether or not GCPs are used, the true geospatial accuracy of collected UAS data remains unknown. The objective of this study was to measure and compare the geospatial accuracy of images obtained with various UAS platforms at two flight altitudes. Aerial imagery was collected using four platforms equipped with different RGB cameras: Phantom 4, eBee Ag, eBee Plus, and Trimble UX5. All platforms were equipped with manufacturer GPS receivers, and RTK was activated on the eBee Plus. Each platform was flown at 75 and 120 m altitudes, and the experiment was replicated three times. Results demonstrated that using GCPs during data processing improved the horizontal and vertical accuracies of the Phantom 4, eBee Ag, and Trimble UX, decreased the between-flight variability, and accounted for the negative effect of flight altitude. On the other hand, the RTK technology used with the eBee Plus resulted in images with very high geospatial accuracy with or without GCPs. Using GCPs during data processing or RTK technology at the time of flight provided aerial imagery with horizontal accuracies of 1.5 to 10 cm and vertical accuracies of 0.0 to 0.4 m. These results are within an acceptable range for data utilization, unlike the horizontal and vertical accuracies obtained without GCPs or RTK, which ranged from 32 to 441 cm and from 1 to 126 m, respectively. Results from this study quantify the geospatial accuracy of UAS imagery and provide a better understanding of the relationships between the accuracy of the GPS receivers in UAS, flight altitude, and horizontal and vertical accuracies of collected images. Keywords: Accuracy, Drone, Ground control points, Precision agriculture, UAV.


2021 ◽  
Vol 15 (4) ◽  
pp. 42-47
Author(s):  
R. K. Kurbanov ◽  
N. I. Zakharova ◽  
D. M. Gorshkov

The authors showed that it is possible to quickly collect up-to-date information on the agricultural land condition using an unmanned aerial vehicle. It was noted that the use of ground control points increases the accuracy of project measurements, helps to compare the project post-processing results with the real measurements. (Research purpose) To compare the results of standard and high-precision post-processing of aerial survey data using ground control points. (Materials and methods) Aerial photography was carried out on a 1.1- hectare breeding field. The authors used DJI Matrice 200 v2 unmanned aerial vehicle with a GNSS L1/L2 receiver and a modified DJI X4S camera, five control points sized 50 × 50 centimeters and an EMLID Reach RS2 multi-frequency GNSS receiver. The results of scientific research into the use of ground control points during aerial photography were studied. (Results and discussion) It was found out that the error of georeferencing images obtained by an unmanned aerial vehicle without control points is significantly higher during the standard data processing compared to the high-precision one. The project error when using five control points is 3.9 times higher during the standard data processing. (Conclusions) It was shown that using ground control points it is possible to improve the project measurement accuracy, as well as compare the project post-processing results with the measurements on the ground. It was detected that the high-precision monitoring enables the use of fewer ground control points. It was found out that in order to obtain data with the accuracy of 2-4 centimeters in plan and height, at least 3 ground control points need to be used during the high-precision post-processing.


Author(s):  
O. Mian ◽  
J. Lutes ◽  
G. Lipa ◽  
J. J. Hutton ◽  
E. Gavelle ◽  
...  

Efficient mapping from unmanned aerial platforms cannot rely on aerial triangulation using known ground control points. The cost and time of setting ground control, added to the need for increased overlap between flight lines, severely limits the ability of small VTOL platforms, in particular, to handle mapping-grade missions of all but the very smallest survey areas. Applanix has brought its experience in manned photogrammetry applications to this challenge, setting out the requirements for increasing the efficiency of mapping operations from small UAVs, using survey-grade GNSS-Inertial technology to accomplish direct georeferencing of the platform and/or the imaging payload. The Direct Mapping Solution for Unmanned Aerial Vehicles (DMS-UAV) is a complete and ready-to-integrate OEM solution for Direct Georeferencing (DG) on unmanned aerial platforms. Designed as a solution for systems integrators to create mapping payloads for UAVs of all types and sizes, the DMS produces directly georeferenced products for any imaging payload (visual, LiDAR, infrared, multispectral imaging, even video). Additionally, DMS addresses the airframe’s requirements for high-accuracy position and orientation for such tasks as precision RTK landing and Precision Orientation for Air Data Systems (ADS), Guidance and Control. <br><br> This paper presents results using a DMS comprised of an Applanix APX-15 UAV with a Sony a7R camera to produce highly accurate orthorectified imagery without Ground Control Points on a Microdrones md4-1000 platform conducted by Applanix and Avyon. APX-15 UAV is a single-board, small-form-factor GNSS-Inertial system designed for use on small, lightweight platforms. The Sony a7R is a prosumer digital RGB camera sensor, with a 36MP, 4.9-micron CCD producing images at 7360 columns by 4912 rows. It was configured with a 50mm AF-S Nikkor f/1.8 lens and subsequently with a 35mm Zeiss Sonnar T* FE F2.8 lens. Both the camera/lens combinations and the APX-15 were mounted to a Microdrones md4-1000 quad-rotor VTOL UAV. The Sony A7R and each lens combination were focused and calibrated terrestrially using the Applanix camera calibration facility, and then integrated with the APX-15 GNSS-Inertial system using a custom mount specifically designed for UAV applications. The mount is constructed in such a way as to maintain the stability of both the interior orientation and IMU boresight calibration over shock and vibration, thus turning the Sony A7R into a metric imaging solution. <br><br> In July and August 2015, Applanix and Avyon carried out a series of test flights of this system. The goal of these test flights was to assess the performance of DMS APX-15 direct georeferencing system under various scenarios. Furthermore, an examination of how DMS APX-15 can be used to produce accurate map products without the use of ground control points and with reduced sidelap was also carried out. Reducing the side lap for survey missions performed by small UAVs can significantly increase the mapping productivity of these platforms. <br><br> The area mapped during the first flight campaign was a 250m x 300m block and a 775m long railway corridor in a rural setting in Ontario, Canada. The second area mapped was a 450m long corridor over a dam known as Fryer Dam (over Richelieu River in Quebec, Canada). Several ground control points were distributed within both test areas. <br><br> The flight over the block area included 8 North-South lines and 1 cross strip flown at 80m AGL, resulting in a ~1cm GSD. The flight over the railway corridor included 2 North-South lines also flown at 80m AGL. Similarly, the flight over the dam corridor included 2 North-South lines flown at 50m AGL. The focus of this paper was to analyse the results obtained from the two corridors. <br><br> Test results from both areas were processed using Direct Georeferencing techniques, and then compared for accuracy against the known positions of ground control points in each test area. The GNSS-Inertial data collected by the APX-15 was post-processed in Single Base mode, using a base station located in the project area via POSPac UAV. For the block and railway corridor, the basestation’s position was precisely determined by processing a 12-hour session using the CSRS-PPP Post Processing service. Similarly, for the flight over Fryer Dam, the base-station’s position was also precisely determined by processing a 4-hour session using the CSRS-PPP Post Processing service. POSPac UAV’s camera calibration and quality control (CalQC) module was used to refine the camera interior orientation parameters using an Integrated Sensor Orientation (ISO) approach. POSPac UAV was also used to generate the Exterior Orientation parameters for images collected during the test flight. <br><br> The Inpho photogrammetric software package was used to develop the final map products for both corridors under various scenarios. The imagery was first imported into an Inpho project, with updated focal length, principal point offsets and Exterior Orientation parameters. First, a Digital Terrain/Surface Model (DTM/DSM) was extracted from the stereo imagery, following which the raw images were orthorectified to produce an orthomosaic product.


Sign in / Sign up

Export Citation Format

Share Document