scholarly journals A ROBUST REGISTRATION ALGORITHM FOR POINT CLOUDS FROM UAV IMAGES FOR CHANGE DETECTION

Author(s):  
A. Al-Rawabdeh ◽  
H. Al-Gurrani ◽  
K. Al-Durgham ◽  
I. Detchev ◽  
F. He ◽  
...  

Landslides are among the major threats to urban landscape and manmade infrastructure. They often cause economic losses, property damages, and loss of lives. Temporal monitoring data of landslides from different epochs empowers the evaluation of landslide progression. Alignment of overlapping surfaces from two or more epochs is crucial for the proper analysis of landslide dynamics. The traditional methods for point-cloud-based landslide monitoring rely on using a variation of the Iterative Closest Point (ICP) registration procedure to align any reconstructed surfaces from different epochs to a common reference frame. However, sometimes the ICP-based registration can fail or may not provide sufficient accuracy. For example, point clouds from different epochs might fit to local minima due to lack of geometrical variability within the data. Also, manual interaction is required to exclude any non-stable areas from the registration process. In this paper, a robust image-based registration method is introduced for the simultaneous evaluation of all registration parameters. This includes the Interior Orientation Parameters (IOPs) of the camera and the Exterior Orientation Parameters (EOPs) of the involved images from all available observation epochs via a bundle block adjustment with self-calibration. Next, a semi-global dense matching technique is implemented to generate dense 3D point clouds for each epoch using the images captured in a particular epoch separately. The normal distances between any two consecutive point clouds can then be readily computed, because the point clouds are already effectively co-registered. A low-cost DJI Phantom II Unmanned Aerial Vehicle (UAV) was customised and used in this research for temporal data collection over an active soil creep area in Lethbridge, Alberta, Canada. The customisation included adding a GPS logger and a Large-Field-Of-View (LFOV) action camera which facilitated capturing high-resolution geo-tagged images in two epochs over the period of one year (i.e., May 2014 and May 2015). Note that due to the coarse accuracy of the on-board GPS receiver (e.g., +/- 5-10 m) the geo-tagged positions of the images were only used as initial values in the bundle block adjustment. Normal distances, signifying detected changes, varying from 20 cm to 4 m were identified between the two epochs. The accuracy of the co-registered surfaces was estimated by comparing non-active patches within the monitored area of interest. Since these non-active sub-areas are stationary, the computed normal distances should theoretically be close to zero. The quality control of the registration results showed that the average normal distance was approximately 4 cm, which is within the noise level of the reconstructed surfaces.

Author(s):  
A. Al-Rawabdeh ◽  
H. Al-Gurrani ◽  
K. Al-Durgham ◽  
I. Detchev ◽  
F. He ◽  
...  

Landslides are among the major threats to urban landscape and manmade infrastructure. They often cause economic losses, property damages, and loss of lives. Temporal monitoring data of landslides from different epochs empowers the evaluation of landslide progression. Alignment of overlapping surfaces from two or more epochs is crucial for the proper analysis of landslide dynamics. The traditional methods for point-cloud-based landslide monitoring rely on using a variation of the Iterative Closest Point (ICP) registration procedure to align any reconstructed surfaces from different epochs to a common reference frame. However, sometimes the ICP-based registration can fail or may not provide sufficient accuracy. For example, point clouds from different epochs might fit to local minima due to lack of geometrical variability within the data. Also, manual interaction is required to exclude any non-stable areas from the registration process. In this paper, a robust image-based registration method is introduced for the simultaneous evaluation of all registration parameters. This includes the Interior Orientation Parameters (IOPs) of the camera and the Exterior Orientation Parameters (EOPs) of the involved images from all available observation epochs via a bundle block adjustment with self-calibration. Next, a semi-global dense matching technique is implemented to generate dense 3D point clouds for each epoch using the images captured in a particular epoch separately. The normal distances between any two consecutive point clouds can then be readily computed, because the point clouds are already effectively co-registered. A low-cost DJI Phantom II Unmanned Aerial Vehicle (UAV) was customised and used in this research for temporal data collection over an active soil creep area in Lethbridge, Alberta, Canada. The customisation included adding a GPS logger and a Large-Field-Of-View (LFOV) action camera which facilitated capturing high-resolution geo-tagged images in two epochs over the period of one year (i.e., May 2014 and May 2015). Note that due to the coarse accuracy of the on-board GPS receiver (e.g., +/- 5-10 m) the geo-tagged positions of the images were only used as initial values in the bundle block adjustment. Normal distances, signifying detected changes, varying from 20 cm to 4 m were identified between the two epochs. The accuracy of the co-registered surfaces was estimated by comparing non-active patches within the monitored area of interest. Since these non-active sub-areas are stationary, the computed normal distances should theoretically be close to zero. The quality control of the registration results showed that the average normal distance was approximately 4 cm, which is within the noise level of the reconstructed surfaces.


2010 ◽  
Author(s):  
Ting Wu ◽  
Naiguang Lv ◽  
Xiaoping Lou ◽  
Peng Sun

Author(s):  
S. Rhee ◽  
T. Kim

3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2364 ◽  
Author(s):  
Martina Cignetti ◽  
Danilo Godone ◽  
Aleksandra Wrzesniak ◽  
Daniele Giordan

Structure from Motion (SfM) is a powerful tool to provide 3D point clouds from a sequence of images taken from different remote sensing technologies. The use of this approach for processing images captured from both Remotely Piloted Aerial Vehicles (RPAS), historical aerial photograms, and smartphones, constitutes a valuable solution for the identification and characterization of active landslides. We applied SfM to process all the acquired and available images for the study of the Champlas du Col landslide, a complex slope instability reactivated in spring 2018 in the Piemonte Region (north-western Italy). This last reactivation of the slide, principally due to snow melting at the end of the winter season, interrupted the main road used to reach Sestriere, one of the most famous ski resorts in north-western Italy. We tested how SfM can be applied to process high-resolution multisource datasets by processing: (i) historical aerial photograms collected from five diverse regional flights, (ii) RGB and multi-spectral images acquired by two RPAS, taken in different moments, and (iii) terrestrial sequences of the most representative kinematic elements due to the evolution of the landslide. In addition, we obtained an overall framework of the historical development of the area of interest, and distinguished several generations of landslides. Moreover, an in-depth geomorphological characterization of the Champlas du Col landslide reactivation was done, by testing a cost-effective and rapid methodology based on SfM principles, which is easily repeatable to characterize and investigate active landslides.


2020 ◽  
Vol 9 (12) ◽  
pp. 759
Author(s):  
Yufu Zang ◽  
Bijun Li ◽  
Xiongwu Xiao ◽  
Jianfeng Zhu ◽  
Fancong Meng

Heritage documentation is implemented by digitally recording historical artifacts for the conservation and protection of these cultural heritage objects. As efficient spatial data acquisition tools, laser scanners have been widely used to collect highly accurate three-dimensional (3D) point clouds without damaging the original structure and the environment. To ensure the integrity and quality of the collected data, field inspection (i.e., on-spot checking the data quality) should be carried out to determine the need for additional measurements (i.e., extra laser scanning for areas with quality issues such as data missing and quality degradation). To facilitate inspection of all collected point clouds, especially checking the quality issues in overlaps between adjacent scans, all scans should be registered together. Thus, a point cloud registration method that is able to register scans fast and robustly is required. To fulfill the aim, this study proposes an efficient probabilistic registration for free-form cultural heritage objects by integrating the proposed principal direction descriptor and curve constraints. We developed a novel shape descriptor based on a local frame of principal directions. Within the frame, its density and distance feature images were generated to describe the shape of the local surface. We then embedded the descriptor into a probabilistic framework to reject ambiguous matches. Spatial curves were integrated as constraints to delimit the solution space. Finally, a multi-view registration was used to refine the position and orientation of each scan for the field inspection. Comprehensive experiments show that the proposed method was able to perform well in terms of rotation error, translation error, robustness, and runtime and outperformed some commonly used approaches.


2020 ◽  
Vol 12 (14) ◽  
pp. 2268
Author(s):  
Tian Zhou ◽  
Seyyed Meghdad Hasheminasab ◽  
Radhika Ravi ◽  
Ayman Habib

Unmanned aerial vehicles (UAVs) are quickly emerging as a popular platform for 3D reconstruction/modeling in various applications such as precision agriculture, coastal monitoring, and emergency management. For such applications, LiDAR and frame cameras are the two most commonly used sensors for 3D mapping of the object space. For example, point clouds for the area of interest can be directly derived from LiDAR sensors onboard UAVs equipped with integrated global navigation satellite systems and inertial navigation systems (GNSS/INS). Imagery-based mapping, on the other hand, is considered to be a cost-effective and practical option and is often conducted by generating point clouds and orthophotos using structure from motion (SfM) techniques. Mapping with photogrammetric approaches requires accurate camera interior orientation parameters (IOPs), especially when direct georeferencing is utilized. Most state-of-the-art approaches for determining/refining camera IOPs depend on ground control points (GCPs). However, establishing GCPs is expensive and labor-intensive, and more importantly, the distribution and number of GCPs are usually less than optimal to provide adequate control for determining and/or refining camera IOPs. Moreover, consumer-grade cameras with unstable IOPs have been widely used for mapping applications. Therefore, in such scenarios, where frequent camera calibration or IOP refinement is required, GCP-based approaches are impractical. To eliminate the need for GCPs, this study uses LiDAR data as a reference surface to perform in situ refinement of camera IOPs. The proposed refinement strategy is conducted in three main steps. An image-based sparse point cloud is first generated via a GNSS/INS-assisted SfM strategy. Then, LiDAR points corresponding to the resultant image-based sparse point cloud are identified through an iterative plane fitting approach and are referred to as LiDAR control points (LCPs). Finally, IOPs of the utilized camera are refined through a GNSS/INS-assisted bundle adjustment procedure using LCPs. Seven datasets over two study sites with a variety of geomorphic features are used to evaluate the performance of the developed strategy. The results illustrate the ability of the proposed approach to achieve an object space absolute accuracy of 3–5 cm (i.e., 5–10 times the ground sampling distance) at a 41 m flying height.


Optik ◽  
2021 ◽  
pp. 167764
Author(s):  
Meiting Xin ◽  
Bing Li ◽  
Xiang Wei ◽  
Zhuo Zhao

Author(s):  
I.-C. Lee ◽  
F. Tsai

A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. <br><br> In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. <br><br> The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The results presented in this paper demonstrate the potential of using panoramic images to generate 3D point clouds and 3D models. However, it is currently a manual and labor-intensive process. A research is being carried out to Increase the degree of automation of these procedures.


2020 ◽  
Vol 12 (3) ◽  
pp. 351 ◽  
Author(s):  
Seyyed Meghdad Hasheminasab ◽  
Tian Zhou ◽  
Ayman Habib

Acquired imagery by unmanned aerial vehicles (UAVs) has been widely used for three-dimensional (3D) reconstruction/modeling in various digital agriculture applications, such as phenotyping, crop monitoring, and yield prediction. 3D reconstruction from well-textured UAV-based images has matured and the user community has access to several commercial and opensource tools that provide accurate products at a high level of automation. However, in some applications, such as digital agriculture, due to repetitive image patterns, these approaches are not always able to produce reliable/complete products. The main limitation of these techniques is their inability to establish a sufficient number of correctly matched features among overlapping images, causing incomplete and/or inaccurate 3D reconstruction. This paper provides two structure from motion (SfM) strategies, which use trajectory information provided by an onboard survey-grade global navigation satellite system/inertial navigation system (GNSS/INS) and system calibration parameters. The main difference between the proposed strategies is that the first one—denoted as partially GNSS/INS-assisted SfM—implements the four stages of an automated triangulation procedure, namely, imaging matching, relative orientation parameters (ROPs) estimation, exterior orientation parameters (EOPs) recovery, and bundle adjustment (BA). The second strategy— denoted as fully GNSS/INS-assisted SfM—removes the EOPs estimation step while introducing a random sample consensus (RANSAC)-based strategy for removing matching outliers before the BA stage. Both strategies modify the image matching by restricting the search space for conjugate points. They also implement a linear procedure for ROPs’ refinement. Finally, they use the GNSS/INS information in modified collinearity equations for a simpler BA procedure that could be used for refining system calibration parameters. Eight datasets over six agricultural fields are used to evaluate the performance of the developed strategies. In comparison with a traditional SfM framework and Pix4D Mapper Pro, the proposed strategies are able to generate denser and more accurate 3D point clouds as well as orthophotos without any gaps.


Author(s):  
Bo Sun ◽  
Yadan Zeng ◽  
Houde Dai ◽  
Junhao Xiao ◽  
Jianwei Zhang

Purpose This paper aims to present the spherical entropy image (SEI), a novel global descriptor for the scan registration of three-dimensional (3D) point clouds. This paper also introduces a global feature-less scan registration strategy based on SEI. It is advantageous for 3D data processing in the scenarios such as mobile robotics and reverse engineering. Design/methodology/approach The descriptor works through representing the scan by a spherical function named SEI, whose properties allow to decompose the six-dimensional transformation into 3D rotation and 3D translation. The 3D rotation is estimated by the generalized convolution theorem based on the spherical Fourier transform of SEI. Then, the translation recovery is determined by phase only matched filtering. Findings No explicit features and planar segments should be contained in the input data of the method. The experimental results illustrate the parameter independence, high reliability and efficiency of the novel algorithm in registration of feature-less scans. Originality/value A novel global descriptor (SEI) for the scan registration of 3D point clouds is presented. It inherits both descriptive power of signature-based methods and robustness of histogram-based methods. A high reliability and efficiency registration method of scans based on SEI is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document