scholarly journals STUDY ON MODELING AND VISUALIZING THE POSITIONAL UNCERTAINTY OF REMOTE SENSING IMAGE

Author(s):  
Weili Jiao ◽  
Tengfei Long ◽  
Saiguang Ling ◽  
Guojin He

It is inevitable to bring about uncertainty during the process of data acquisition. The traditional method to evaluate the geometric positioning accuracy is usually by the statistical method and represented by the root mean square errors (RMSEs) of control points. It is individual and discontinuous, so it is difficult to describe the error spatial distribution. In this paper the error uncertainty of each control point is deduced, and the uncertainty spatial distribution model of each arbitrary point is established. The error model is proposed to evaluate the geometric accuracy of remote sensing image. Then several visualization methods are studied to represent the discrete and continuous data of geometric uncertainties. The experiments show that the proposed evaluation method of error distribution model compared with the traditional method of RMSEs can get the similar results but without requiring the user to collect control points as checkpoints, and error distribution information calculated by the model can be provided to users along with the geometric image data. Additionally, the visualization methods described in this paper can effectively and objectively represents the image geometric quality, and also can help users probe the reasons of bringing the image uncertainties in some extent.

Author(s):  
Weili Jiao ◽  
Tengfei Long ◽  
Saiguang Ling ◽  
Guojin He

It is inevitable to bring about uncertainty during the process of data acquisition. The traditional method to evaluate the geometric positioning accuracy is usually by the statistical method and represented by the root mean square errors (RMSEs) of control points. It is individual and discontinuous, so it is difficult to describe the error spatial distribution. In this paper the error uncertainty of each control point is deduced, and the uncertainty spatial distribution model of each arbitrary point is established. The error model is proposed to evaluate the geometric accuracy of remote sensing image. Then several visualization methods are studied to represent the discrete and continuous data of geometric uncertainties. The experiments show that the proposed evaluation method of error distribution model compared with the traditional method of RMSEs can get the similar results but without requiring the user to collect control points as checkpoints, and error distribution information calculated by the model can be provided to users along with the geometric image data. Additionally, the visualization methods described in this paper can effectively and objectively represents the image geometric quality, and also can help users probe the reasons of bringing the image uncertainties in some extent.


2013 ◽  
Vol 411-414 ◽  
pp. 1267-1276
Author(s):  
Lei Lei Geng ◽  
De Shen Xia ◽  
Quan Sen Sun ◽  
Kai Yuan

With the rapid development of the remote sensing satellite, the size and resolution of remote sensing image grow increasingly. The evaluation of image quality requires precise information of ground control points extracted from remote sensing image and reference image. Therefore, we propose an adaptive Wallis enhancement based on radiation-parameters to increase the number of ground control points and to improve the matching precision. First, feature vectors of sub-region are constructed by computing image radiation-parameters, and then the sub-region terrain in the remote sensing image can be recognized using nearest neighbor classifier. Second, according to specific type of sub-region terrain, we enhance images using adaptive Wallis filter with local parameters. Finally, two-level matching method is used to extract and match the control points. The experiments show that compared with existing Wallis filter which are based on global parameters, our method gets better results in the detail enhancement on ZY-3 image so that more and higher accurate ground control points can be effectively extracted to achieve the evaluation of geometric precision automatically and accurately.


2021 ◽  
Author(s):  
Ilaria Clemenzi ◽  
David Gustafsson ◽  
Jie Zhang ◽  
Björn Norell ◽  
Wolf Marchand ◽  
...  

<p>Snow in the mountains is the result of the interplay between meteorological conditions, e.g., precipitation, wind and solar radiation, and landscape features, e.g., vegetation and topography. For this reason, it is highly variable in time and space. It represents an important water storage for several sectors of the society including tourism, ecology and hydropower. The estimation of the amount of snow stored in winter and available in the form of snowmelt runoff can be strategic for their sustainability. In the hydropower sector, for example, the occurrence of higher snow and snowmelt runoff volumes at the end of the spring and in the early summer compared to the estimated one can substantially impact reservoir regulation with energy and economical losses. An accurate estimation of the snow volumes and their spatial and temporal distribution is thus essential for spring flood runoff prediction. Despite the increasing effort in the development of new acquisition techniques, the availability of extensive and representative snow and density measurements for snow water equivalent estimations is still limited. Hydrological models in combination with data assimilation of ground or remote sensing observations is a way to overcome these limitations. However, the impact of using different types of snow observations on snowmelt runoff predictions is, little understood. In this study we investigated the potential of assimilating in situ and remote sensing snow observations to improve snow water equivalent estimates and snowmelt runoff predictions. We modelled the seasonal snow water equivalent distribution in the Lake Överuman catchment, Northern Sweden, which is used for hydropower production. Simulations were performed using the semi-distributed hydrological model HYPE for the snow seasons 2017-2020. For this purpose, a snowfall distribution model based on wind-shelter factors was included to represent snow spatial distribution within model units. The units consist of 2.5x2.5 km<sup>2</sup> grid cells, which were further divided into hydrological response units based on elevation, vegetation and aspect. The impact on the estimation of the total catchment mean snow water equivalent and snowmelt runoff volume were evaluated using for data assimilation, gpr-based snow water equivalent data acquired along survey lines in the catchment in the early spring of the four years, snow water equivalent data obtained by a machine learning algorithm and satellite-based fractional snow cover data. Results show that the wind-shelter based snow distribution model was able to represent a similar spatial distribution as the gpr survey lines, when assessed on the catchment level. Deviations in the model performance within and between specific gpr survey lines indicate issues with the spatial distribution of input precipitation, and/or need to include explicit representation of snow drift between model units. The explicit snow distribution model also improved runoff simulations, and the ability of the model to improve forecast through data assimilation.</p>


2020 ◽  
Vol 9 (2) ◽  
pp. 61
Author(s):  
Hongwei Zhao ◽  
Lin Yuan ◽  
Haoyu Zhao

Recently, with the rapid growth of the number of datasets with remote sensing images, it is urgent to propose an effective image retrieval method to manage and use such image data. In this paper, we propose a deep metric learning strategy based on Similarity Retention Loss (SRL) for content-based remote sensing image retrieval. We have improved the current metric learning methods from the following aspects—sample mining, network model structure and metric loss function. On the basis of redefining the hard samples and easy samples, we mine the positive and negative samples according to the size and spatial distribution of the dataset classes. At the same time, Similarity Retention Loss is proposed and the ratio of easy samples to hard samples in the class is used to assign dynamic weights to the hard samples selected in the experiment to learn the sample structure characteristics within the class. For negative samples, different weights are set based on the spatial distribution of the surrounding samples to maintain the consistency of similar structures among classes. Finally, we conduct a large number of comprehensive experiments on two remote sensing datasets with the fine-tuning network. The experiment results show that the method used in this paper achieves the state-of-the-art performance.


2014 ◽  
Author(s):  
Ying Xia ◽  
◽  
Linjun Zhu ◽  
Xiaobo Luo ◽  
Hae Young Bae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document