geometric precision
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 34)

H-INDEX

8
(FIVE YEARS 3)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 103
Author(s):  
Sattar Ullah ◽  
Peng Xu ◽  
Xiaoqiang Li ◽  
Yanle Li ◽  
Kai Han ◽  
...  

Low geometric accuracy is one of the main limitations in double-sided incremental forming (DSIF) with a rough surface finish, long forming time, and excessive sheet thinning. The lost contact between the support tool and the sheet is considered the main reason for the geometric error. Researchers presented different solutions for geometric accuracy improvement, such as toolpath compensation, adaptation, material redistribution, and heat-assisted processes. Toolpath compensations strategies improve geometric precision without adding extra tooling to the setup. It relies on formulas, simulation, and algorithm-based studies to enhance the part accuracy. Toolpath adaptation improves the part accuracy by adding additional equipment such as pneumatically or spring-loaded support tools or changing the conventional toolpath sequence such as accumulative-DSIF (ADSIF) and its variants. It also includes forming multi-region parts with various arrangements. Toolpath adaptation mostly requires experimental trial-and-error experiments to adjust parameters to obtain the desired shape with precision. Material redistribution strategies are effective for high-wall-angle parts. It is the less studied area in the geometric precision context in the DSIF. The heat-assisted process mainly concentrates on hard-to-form material. It can align itself to any toolpath compensation or adaptation strategy. This work aims to provide DSIF variants and studies, which focus on improving geometric accuracy using various methodologies. It includes a brief survey of tool force requirements for different strategies, sheet thickness variation in DSIF, and support tool role on deformation and fracture mechanism. Finally, a brief discussion and future work are suggested based on the insights from several articles.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042093
Author(s):  
Xizi Jia ◽  
Yuanfa Ji ◽  
Wentao Fu ◽  
Weibin Liang ◽  
Bingye Pan

Abstract In terms of quality control of ambiguity estimation, the common partial ambiguity fixation algorithm is improved, and the SC-PAR (Single frequency Combined Partial Ambiguity Resolution) algorithm is proposed. After the algorithm fails to fix the full ambiguity, it filters the ambiguity subset step by step according to the number of continuous satellite lock epochs, satellite elevation angle, satellite signal-to-noise ratio, geometric precision factor, ambiguity variance and ambiguity precision attenuation factor, and searches Optimal ambiguity subset. According to the R-ratio value and the success rate index, the search results are jointly tested, and the remaining subsets are corrected with the subsets that pass the test. The results show that compared with the FAR and conventional PAR algorithms, the fixed rate of the SC-PAR algorithm is increased by 65.01% and 27.97%, respectively, and the accuracy is also significantly improved.


2021 ◽  
Vol 11 (19) ◽  
pp. 8865
Author(s):  
Andrey A. Radionov ◽  
Vadim R. Gasiyarov ◽  
Alexander S. Karandaev ◽  
Boris M. Loginov ◽  
Vadim R. Khramshin

The quality of steelwork products depends on the geometric precision of flat products. Heavy-plate rolling mills produce plates for large-diameter pipes and for use in shipbuilding, mechanical engineering, and construction. This is why the precision requirements are so stringent. Today’s Mills 5000 produce flat products of up to 5 m in width; the operation of these units shows ‘camber’ defects and axial shift of the roll at the stand exit point. This induces greater loss of metal due to edge trimming and involves a higher risk of accidents. These defects mainly occur due to the asymmetry in the roll gap, which is in turn caused by their misalignment in rolling. As a result, the feed varies in gauge, and the strip moves unevenly. The paper’s key contribution consists in theoretical and experimental substantiation and development of a set of control methods intended to address roll-gap asymmetry. The methods effectively compensate for the asymmetry resulting from the “inherited” wedge, which preexists before the strip enters the stand. They also compensate for the “ongoing” roll misalignment that is caused by the difference in force on the opposite side of the stand during rolling. This comprehensive approach to addressing camber and axial displacement of the feed has not been found in other sources. This paper presents a RAC controller connection diagram that ensures that the roll gap is even across the feed. The paper notes the shortcomings of the design configuration of the controller and shows how it could be improved. The authors have developed a predictive roll-gap asymmetry adjustment method that compensates for the deviations in gauge during the inter-passage pauses. They have also developed a method to control gap misalignment during rolling. The paper showcases the feasibility of a proportional-derivative RAC. The methods have been tested by mathematical modeling and experimentally. The paper further shows oscillograms sampled at Mill 5000 after implementing the developed solutions. Tests confirm far better precision of the screw-down mechanisms on the opposite sides of the stand. This reduces the variation in gauge across the feed and thus curbs the camber defect. As a result, the geometry of the flat improves, and less metal is lost in trimming. The paper further discusses how the RAC controller interacts with the automatic gauge control system. The conclusion is that these systems do not interfere with each other. The developed systems have proceeded to pilot testing.


2021 ◽  
pp. 1-31
Author(s):  
Yanqing Tan ◽  
Lianjie Ma ◽  
Han Kong

Abstract A guide pair is a core part of the feed system in a machine tool. Its geometric accuracy is attenuated due to wear, thus directly affecting its guiding accuracy and the processing accuracy and quality of a machine tool. In this paper, based on the statistical principle, the influences of the surface wear of guideway on its straightness attenuation was explored and an analytical prediction model for the geometric accuracy attenuation of slide guide was established. The reciprocating wear test of slide guide samples was performed with a test bench to explore the attenuation of guideway surface straightness under various machining conditions: isometric feeding, random length distribution feeding (normal distribution, negatively skewed distribution and positively skewed distribution), and feeding-retracting (with unequal reciprocating speeds). The comparison between experimental results and predicted results showed that the prediction model could well predict the precision attenuation of the guideway under stable working conditions. The experimental results also proved that machining workpieces with the same size or machining workpieces with a larger size as possible was beneficial to extend the precision maintaining life of slide guide. The prediction model suggested the quantitative relationship between the precision attenuation of slide guide and the main factors including material properties, surface topography parameters, working conditions, operation parameters and surface friction properties. With this model, the real-time straightness on the guideway surface can be calculated and the geometric precision maintaining life of slide guide can also be predicted.


2021 ◽  
Author(s):  
Luiza Marina Esteves de Carvalho ◽  
Alessandra Melo ◽  
Glauco José de Matos Umbelino ◽  
Jan-Peter Mund ◽  
Jhonathan Gomes dos Santos ◽  
...  

Abstract The charcoal stock in a forest company is controlled based on the theoretical capacity of the masonry ovens (input) and shipped trucks (output). During the year, the company must monitor the stock for the purposes of accountability reports. This study proposes a more efficient and equally precise survey method that overcomes the challenges of the common monitoring system in Brazil. During this study, a new monitoring method based on digital stereoscopy from UAV images was developed, implemented and evaluated. The results were compared with a traditional topographic survey. A masonry oven's complex containing eight charcoal heaps was flown and surveyed using a multi-engine UAV, with an integrated Global Navigation Satellite System (GNSS) and RTK equipment. Two stereoscopic processing methods were applied: (1) very low quality and (2) high quality to image alignment, reconstruction of the dense cloud, face count and in three-dimensional mesh creation. Low quality products showed geometric deformities when compared to high quality, but resulted in similar estimation to the topographic survey. The results indicated that the charcoal heaps' volume estimation using UAV derived orthomosaics can replace the conventional method of GNSS RTK surveys with considerable gains in stockpile volume accuracy, inventory frequency, and safety. In the case of high accuracy parameterization, improvements in geometric precision and accuracy are also produced.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1989
Author(s):  
Miguel Silva ◽  
António Pereira ◽  
Álvaro Sampaio ◽  
António Pontes

Additive Manufacturing (AM) technology has been increasing its penetration not only for the production of prototypes and validation models, but also for final parts. This technology allows producing parts with almost no geometry restrictions, even on a micro-scale. However, the micro-Detail (mD) measurement of complex parts remains an open field of investigation. To be able to develop all the potential that this technology offers, it is necessary to quantify a process’s precision limitations, repeatability, and reproducibility. New design methodologies focus on optimization, designing microstructured parts with a complex material distribution. These methodologies are based on mathematical formulations, whose numerical models assume the model discretization through volumetric unitary elements (voxels) with explicit dimensions and geometries. The accuracy of these models in predicting the behavior of the pieces is influenced by the fidelity of the object’s physical reproduction. Despite that the Material Jetting (MJ) process makes it possible to produce complex parts, it is crucial to experimentally establish the minimum dimensional and geometric limits to produce parts with mDs. This work aims to support designers and engineers in selecting the most appropriate scale to produce parts discretized by hexahedral meshes (cubes). This study evaluated the dimensional and geometric precision of MJ equipment in the production of mDs (cubes) comparing the nominal design dimensions. A Sample Test (ST) with different sizes of mDs was modeled and produced. The dimensional and geometric precision of the mDs were quantified concerning the nominal value and the calculated deviations. From the tests performed, it was possible to conclude that: (i) more than 90% of all analyzed mDs exhibit three dimensions (xyz) higher than the nominal ones; (ii) for micro-details smaller than 423 m, they show a distorted geometry, and below 212 m, printing fails.


2021 ◽  
Vol 11 (7) ◽  
pp. 3077
Author(s):  
Corina Radu (Frenț) ◽  
Maria Magdalena Roșu ◽  
Lucian Matei ◽  
Liviu Marian Ungureanu ◽  
Mihaiela Iliescu

This paper presents aspects of the concept and design of prostheses for the upper limb. The objective of this research is that of prototyping a customized prosthesis, with EMG signals that initiate the motion. The prosthesis’ fingers’ motions (as well as that of its hand and forearm parts) are driven by micro-motors, and assisted by the individualized command and control system. The software and hardware tandem concept of this mechatronic system enables complex motion (in the horizontal and vertical plane) with accurate trajectory and different set rules (gripping pressure, object temperature, acceleration towards the object). One important idea is regarding customization via reverse engineering techniques. Due to this, the dimensions and appearance (geometric characteristics) of the prosthesis would look like the human hand itself. The trajectories and motions of the fingers, thumbs, and joints have been studied by kinematic analysis with the matrix–vector method aided by Matlab. The concept and design of the mechanical parts allow for complex finger motion—rotational motion in two planes. The command and control system is embedded, and data received from the sensors are processed by a micro-controller for managing micro-motor control. Preliminary testing of the sensors and micro-motors on a small platform, Arduino, was performed. Prototyping of the mechanical components has been a challenge because of the high accuracy needed for the geometric precision of the parts. Several techniques of rapid prototyping were considered, but only DLP (digital light processing) proved to be the right one.


2021 ◽  
Vol 10 (3) ◽  
pp. 181
Author(s):  
Antonio Gámiz-Gordo ◽  
Juan Cantizani-Oliva ◽  
Juan Francisco Reinoso-Gordo

The work of Philibert Girault de Prangey, who was a draughtsman, pioneering photographer and an Islamic architecture scholar, has been the subject of recent exhibitions in his hometown (Langres, 2019), at the Metropolitan Museum (New York, 2019) and at the Musée d’Orsay (Paris, 2020). After visiting Andalusia between 1832 and 1833, Prangey completed the publication “Monuments arabes et moresques de Cordoue, Seville et Grenada” in 1839, based on his own drawings and measurements. For the first time, this research analyses his interior perspectives of the Mosque-Cathedral of Cordoba (Spain). The novel methodology is based on its comparison with a digital model derived from the point cloud captured by a 3D laser scanner. After locating the different viewpoints, the geometric precision and the elaboration process are analysed, taking into account historic images by various authors, other details published by Prangey and the architectural transformations of the building. In this way, the veracity and documentary interest of some beautiful perspectives of a monument inscribed on the World Heritage List by UNESCO is valued.


Sign in / Sign up

Export Citation Format

Share Document