scholarly journals SCENE CLASSFICATION BASED ON THE SEMANTIC-FEATURE FUSION FULLY SPARSE TOPIC MODEL FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGERY

Author(s):  
Qiqi Zhu ◽  
Yanfei Zhong ◽  
Liangpei Zhang

Topic modeling has been an increasingly mature method to bridge the semantic gap between the low-level features and high-level semantic information. However, with more and more high spatial resolution (HSR) images to deal with, conventional probabilistic topic model (PTM) usually presents the images with a dense semantic representation. This consumes more time and requires more storage space. In addition, due to the complex spectral and spatial information, a combination of multiple complementary features is proved to be an effective strategy to improve the performance for HSR image scene classification. But it should be noticed that how the distinct features are fused to fully describe the challenging HSR images, which is a critical factor for scene classification. In this paper, a semantic-feature fusion fully sparse topic model (SFF-FSTM) is proposed for HSR imagery scene classification. In SFF-FSTM, three heterogeneous features – the mean and standard deviation based spectral feature, wavelet based texture feature, and dense scale-invariant feature transform (SIFT) based structural feature are effectively fused at the latent semantic level. The combination of multiple semantic-feature fusion strategy and sparse based FSTM is able to provide adequate feature representations, and can achieve comparable performance with limited training samples. Experimental results on the UC Merced dataset and Google dataset of SIRI-WHU demonstrate that the proposed method can improve the performance of scene classification compared with other scene classification methods for HSR imagery.

Author(s):  
Qiqi Zhu ◽  
Yanfei Zhong ◽  
Liangpei Zhang

Topic modeling has been an increasingly mature method to bridge the semantic gap between the low-level features and high-level semantic information. However, with more and more high spatial resolution (HSR) images to deal with, conventional probabilistic topic model (PTM) usually presents the images with a dense semantic representation. This consumes more time and requires more storage space. In addition, due to the complex spectral and spatial information, a combination of multiple complementary features is proved to be an effective strategy to improve the performance for HSR image scene classification. But it should be noticed that how the distinct features are fused to fully describe the challenging HSR images, which is a critical factor for scene classification. In this paper, a semantic-feature fusion fully sparse topic model (SFF-FSTM) is proposed for HSR imagery scene classification. In SFF-FSTM, three heterogeneous features – the mean and standard deviation based spectral feature, wavelet based texture feature, and dense scale-invariant feature transform (SIFT) based structural feature are effectively fused at the latent semantic level. The combination of multiple semantic-feature fusion strategy and sparse based FSTM is able to provide adequate feature representations, and can achieve comparable performance with limited training samples. Experimental results on the UC Merced dataset and Google dataset of SIRI-WHU demonstrate that the proposed method can improve the performance of scene classification compared with other scene classification methods for HSR imagery.


2019 ◽  
Vol 11 (9) ◽  
pp. 1005
Author(s):  
Jiahui Qu ◽  
Yunsong Li ◽  
Qian Du ◽  
Wenqian Dong ◽  
Bobo Xi

Hyperspectral pansharpening is an effective technique to obtain a high spatial resolution hyperspectral (HS) image. In this paper, a new hyperspectral pansharpening algorithm based on homomorphic filtering and weighted tensor matrix (HFWT) is proposed. In the proposed HFWT method, open-closing morphological operation is utilized to remove the noise of the HS image, and homomorphic filtering is introduced to extract the spatial details of each band in the denoised HS image. More importantly, a weighted root mean squared error-based method is proposed to obtain the total spatial information of the HS image, and an optimized weighted tensor matrix based strategy is presented to integrate spatial information of the HS image with spatial information of the panchromatic (PAN) image. With the appropriate integrated spatial details injection, the fused HS image is generated by constructing the suitable gain matrix. Experimental results over both simulated and real datasets demonstrate that the proposed HFWT method effectively generates the fused HS image with high spatial resolution while maintaining the spectral information of the original low spatial resolution HS image.


2016 ◽  
Vol 8 (2) ◽  
pp. 157 ◽  
Author(s):  
Bei Zhao ◽  
Yanfei Zhong ◽  
Liangpei Zhang ◽  
Bo Huang

Sign in / Sign up

Export Citation Format

Share Document