scholarly journals FEATURE-BASED QUALITY EVALUATION OF 3D POINT CLOUDS – STUDY OF THE PERFORMANCE OF 3D REGISTRATION ALGORITHMS

Author(s):  
T. Ridene ◽  
F. Goulette ◽  
S. Chendeb
Author(s):  
F.I. Apollonio ◽  
A. Ballabeni ◽  
M. Gaiani ◽  
F. Remondino

Every day new tools and algorithms for automated image processing and 3D reconstruction purposes become available, giving the possibility to process large networks of unoriented and markerless images, delivering sparse 3D point clouds at reasonable processing time. In this paper we evaluate some feature-based methods used to automatically extract the tie points necessary for calibration and orientation procedures, in order to better understand their performances for 3D reconstruction purposes. The performed tests – based on the analysis of the SIFT algorithm and its most used variants – processed some datasets and analysed various interesting parameters and outcomes (e.g. number of oriented cameras, average rays per 3D points, average intersection angles per 3D points, theoretical precision of the computed 3D object coordinates, etc.).


2020 ◽  
Vol 12 (3) ◽  
pp. 401 ◽  
Author(s):  
Ravi ◽  
Habib

LiDAR-based mobile mapping systems (MMS) are rapidly gaining popularity for a multitude of applications due to their ability to provide complete and accurate 3D point clouds for any and every scene of interest. However, an accurate calibration technique for such systems is needed in order to unleash their full potential. In this paper, we propose a fully automated profile-based strategy for the calibration of LiDAR-based MMS. The proposed technique is validated by comparing its accuracy against the expected point positioning accuracy for the point cloud based on the used sensors’ specifications. The proposed strategy was seen to reduce the misalignment between different tracks from approximately 2 to 3 m before calibration down to less than 2 cm after calibration for airborne as well as terrestrial mobile LiDAR mapping systems. In other words, the proposed calibration strategy can converge to correct estimates of mounting parameters, even in cases where the initial estimates are significantly different from the true values. Furthermore, the results from the proposed strategy are also verified by comparing them to those from an existing manually-assisted feature-based calibration strategy. The major contribution of the proposed strategy is its ability to conduct the calibration of airborne and wheel-based mobile systems without any requirement for specially designed targets or features in the surrounding environment. The above claims are validated using experimental results conducted for three different MMS – two airborne and one terrestrial – with one or more LiDAR unit.


Author(s):  
D. Abate ◽  
I. Toschi ◽  
C. Sturdy-Colls ◽  
F. Remondino

Crime scene documentation is a fundamental task which has to be undertaken in a fast, accurate and reliable way, highlighting evidence which can be further used for ensuring justice for victims and for guaranteeing the successful prosecution of perpetrators. The main focus of this paper is on the documentation of a typical crime scene and on the rapid recording of any possible contamination that could have influenced its original appearance. A 3D reconstruction of the environment is first generated by processing panoramas acquired with the low-cost Ricoh Theta 360 camera, and further analysed to highlight potentials and limits of this emerging and consumer-grade technology. Then, a methodology is proposed for the rapid recording of changes occurring between the original and the contaminated crime scene. The approach is based on an automatic 3D feature-based data registration, followed by a cloud-to-cloud distance computation, given as input the 3D point clouds generated before and after e.g. the misplacement of evidence. All the algorithms adopted for panoramas pre-processing, photogrammetric 3D reconstruction, 3D geometry registration and analysis, are presented and currently available in open-source or low-cost software solutions.


2020 ◽  
Vol 12 (10) ◽  
pp. 1608 ◽  
Author(s):  
Haris Balta ◽  
Jasmin Velagic ◽  
Halil Beglerovic ◽  
Geert De Cubber ◽  
Bruno Siciliano

The paper proposes a novel framework for registering and segmenting 3D point clouds of large-scale natural terrain and complex environments coming from a multisensor heterogeneous robotics system, consisting of unmanned aerial and ground vehicles. This framework involves data acquisition and pre-processing, 3D heterogeneous registration and integrated multi-sensor based segmentation modules. The first module provides robust and accurate homogeneous registrations of 3D environmental models based on sensors’ measurements acquired from the ground (UGV) and aerial (UAV) robots. For 3D UGV registration, we proposed a novel local minima escape ICP (LME-ICP) method, which is based on the well known iterative closest point (ICP) algorithm extending it by the introduction of our local minima estimation and local minima escape mechanisms. It did not require any prior known pose estimation information acquired from sensing systems like odometry, global positioning system (GPS), or inertial measurement units (IMU). The 3D UAV registration has been performed using the Structure from Motion (SfM) approach. In order to improve and speed up the process of outliers removal for large-scale outdoor environments, we introduced the Fast Cluster Statistical Outlier Removal (FCSOR) method. This method was used to filter out the noise and to downsample the input data, which will spare computational and memory resources for further processing steps. Then, we co-registered a point cloud acquired from a laser ranger (UGV) and a point cloud generated from images (UAV) generated by the SfM method. The 3D heterogeneous module consists of a semi-automated 3D scan registration system, developed with the aim to overcome the shortcomings of the existing fully automated 3D registration approaches. This semi-automated registration system is based on the novel Scale Invariant Registration Method (SIRM). The SIRM provides the initial scaling between two heterogenous point clouds and provides an adaptive mechanism for tuning the mean scale, based on the difference between two consecutive estimated point clouds’ alignment error values. Once aligned, the resulting homogeneous ground-aerial point cloud is further processed by a segmentation module. For this purpose, we have proposed a system for integrated multi-sensor based segmentation of 3D point clouds. This system followed a two steps sequence: ground-object segmentation and color-based region-growing segmentation. The experimental validation of the proposed 3D heterogeneous registration and integrated segmentation framework was performed on large-scale datasets representing unstructured outdoor environments, demonstrating the potential and benefits of the proposed semi-automated 3D registration system in real-world environments.


2014 ◽  
Author(s):  
Timothy Khuon ◽  
Charles Kershner ◽  
Enrico Mattei ◽  
Arnel Alverio ◽  
Robert Rand

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6740
Author(s):  
Guillem Vallicrosa ◽  
Khadidja Himri ◽  
Pere Ridao ◽  
Nuno Gracias

This paper presents a method to build a semantic map to assist an underwater vehicle-manipulator system in performing intervention tasks autonomously in a submerged man-made pipe structure. The method is based on the integration of feature-based slam and 3D object recognition using a database of a priori known objects. The robot uses dvl, pressure, and ahrs sensors for navigation and is equipped with a laser scanner providing non-coloured 3D point clouds of the inspected structure in real time. The object recognition module recognises the pipes and objects within the scan and passes them to the slam, which adds them to the map if not yet observed. Otherwise, it uses them to correct the map and the robot navigation if they were already mapped. The slam provides a consistent map and a drift-less navigation. Moreover, it provides a global identifier for every observed object instance and its pipe connectivity. This information is fed back to the object recognition module, where it is used to estimate the object classes using Bayesian techniques over the set of those object classes which are compatible in terms of pipe connectivity. This allows fusing of all the already available object observations to improve recognition. The outcome of the process is a semantic map made of pipes connected through valves, elbows and tees conforming to the real structure. Knowing the class and the position of objects will enable high-level manipulation commands in the near future.


Author(s):  
A. Christodoulou ◽  
P. van Oosterom

<p><strong>Abstract.</strong> In this paper, a method is proposed for solving relative translations of 3D point clouds collected by Mobile Laser Scanning (MLS) techniques. The proposed approach uses the attributes of the 3D points to generate and match 2D-projections, by employing a simple correlation technique instead of matching in 3D. As a result, the developed method depends more on the number of pixels in the 2D-projections and less on the number of points in the point clouds. This leads to a more cost-efficient method in contrast to 3D registration techniques. The method uses this benefit to provide redundant translation parameters for each point cloud pair. With the utilization of image-based evaluation criteria the reliable translation parameters are detected and only those are used to compute the final solution. Consequently, the confidence levels of each final estimation can be computed. In addition, an indication of robustness showing how many estimations where included for the computation of the final solution is included. It is shown that the method performs fast due to its simplicity especially when medium image resolution’s such as 0.15<span class="thinspace"></span>m are used. Reliable matches can be produced even when the overlap of the point cloud sets is small or the initial offset large as long as the offsets are distinguishable in the projections. Furthermore, a technique is proposed to obtain capabilities for sub-pixel accuracy estimations, as the accuracy of the estimations is restricted to the grid cell size. The technique seems promising, but further improvement is necessary.</p>


Sign in / Sign up

Export Citation Format

Share Document