mobile mapping systems
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 30)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 4 (4) ◽  
pp. 101
Author(s):  
Burak Akpınar

Indoor and outdoor mapping studies can be completed relatively quickly, depending on the developments in Mobile Mapping Systems. Especially in indoor environments where high accuracy GNSS positions cannot be used, mapping studies can be carried out with SLAM algorithms. Although there are many different SLAM algorithms in the literature, each can produce results with different accuracy according to the mapped environment. In this study, 3D maps were produced with LOAM, A-LOAM, and HDL Graph SLAM algorithms in different environments such as long corridors, staircases, and outdoor environments, and the accuracies of the maps produced with different algorithms were compared. For this purpose, a mobile mapping platform using Velodyne VLP-16 LIDAR sensor was developed, and the odometer drift, which causes loss of accuracy in the data collected, was minimized by loop closure and plane detection methods. As a result of the tests, it was determined that the results of the LOAM algorithm were not as accurate as those of the A-LOAM and HDL Graph SLAM algorithms. Both indoor and outdoor environments and the A-LOAM results’ accuracy were two times better than HDL Graph SLAM results.


Author(s):  
Martin Mokroš ◽  
Tomáš Mikita ◽  
Arunima Singh ◽  
Julián Tomaštík ◽  
Juliána Chudá ◽  
...  

Author(s):  
C. Bonfanti ◽  
G. Patrucco ◽  
S. Perri ◽  
G. Sammartano ◽  
A. Spanò

Abstract. The use of moving devices equipped with range- and image-based sensor, generically defined Mobile Mapping systems (MMS), have been quite a disruptive innovation in the development of Geomatics techniques for 3D surveying large indoor-outdoor spaces and offer multiple solutions. The recent expansion of portable devices in the form of trolleys, backpacks, handheld tools largely implements SLAM (Simultaneous Localization and Mapping) algorithms and technology based on both Lidar and/or visual solutions for answering to the positioning and the 3D reconstruction problems. The research on MMS is directed to improve both multi-sensor integration implementation and usability of systems in diversified use contexts and application fields. The aim of the presented research is the evaluation of the potential of the Swift system recently developed by FARO Technologies, that has been fine-tuned for regular and large extent interiors mapping (such as factories, hospitals, airports, offices). The work tries to preliminary investigate the data delivery and usability of the integrated system. This is based on three elements mounted on a sliding trolley moved by the operator walking: the ScanPlan profilometer working for the 2D SLAM mapping, the static TLS Focus S-series, and the smartphone managing the sensors operation and the acquisition progress. The evaluation strategy undertaken will be based on the global and local performance analysis related to the trajectory, the data accuracy, the metric content and consistency. Two test studies belonging to the 20th century. architecture are presented in a preliminary framework of evaluation and validation: a Liberty-style cinema and the Torino Esposizioni Hall B designed in ferrocement by pier Luigi Nervi.


Geomatics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 287-309
Author(s):  
Ankit Patel ◽  
Yi-Ting Cheng ◽  
Radhika Ravi ◽  
Yi-Chun Lin ◽  
Darcy Bullock ◽  
...  

Recently, light detection and ranging (LiDAR)-based mobile mapping systems (MMS) have been utilized for extracting lane markings using deep learning frameworks. However, huge datasets are required for training neural networks. Furthermore, with accurate lane markings being detected utilizing LiDAR data, an algorithm for automatically reporting their intensity information is beneficial for identifying worn-out or missing lane markings. In this paper, a transfer learning approach based on fine-tuning of a pretrained U-net model for lane marking extraction and a strategy for generating intensity profiles using the extracted results are presented. Starting from a pretrained model, a new model can be trained better and faster to make predictions on a target domain dataset with only a few training examples. An original U-net model trained on two-lane highways (source domain dataset) was fine-tuned to make accurate predictions on datasets with one-lane highway patterns (target domain dataset). Specifically, encoder- and decoder-trained U-net models are presented wherein, during retraining of the former, only weights in the encoder path of U-net were allowed to change with decoder weights frozen and vice versa for the latter. On the test data (target domain), the encoder-trained model (F1-score: 86.9%) outperformed the decoder-trained (F1-score: 82.1%). Additionally, on an independent dataset, the encoder-trained one (F1-score: 90.1%) performed better than the decoder-trained one (F1-score: 83.2%). Lastly, on the basis of lane marking results obtained from the encoder-trained U-net, intensity profiles were generated. Such profiles can be used to identify lane marking gaps and investigate their cause through RGB imagery visualization.


2021 ◽  
Vol 15 (3) ◽  
pp. 258-267
Author(s):  
Hiroki Matsumoto ◽  
◽  
Yuma Mori ◽  
Hiroshi Masuda

Mobile mapping systems can capture point clouds and digital images of roadside objects. Such data are useful for maintenance, asset management, and 3D map creation. In this paper, we discuss methods for extracting guardrails that separate roadways and walkways. Since there are various shape patterns for guardrails in Japan, flexible methods are required for extracting them. We propose a new extraction method based on point processing and a convolutional neural network (CNN). In our method, point clouds and images are segmented into small fragments, and their features are extracted using CNNs for images and point clouds. Then, features from images and point clouds are combined and investigated using whether they are guardrails or not. Based on our experiments, our method could extract guardrails from point clouds with a high success rate.


2021 ◽  
Vol 17 ◽  
pp. 371-385
Author(s):  
Ernesto Bernardo ◽  
Stefano Bonfa ◽  
Salvatore Calcagno

The proposed research activity is based on the study and development of advanced survey and monitoring techniques for the control and mapping of road infrastructures. Specifically, we want to create an automated monitoring system mainly through the use of drones that at pre-established time steps acquire the data necessary for the continuous monitoring of the functional characteristics of the road infrastructure and the public usability of dynamic data. Subsequently, through the implementation of algorithms dedicated to the management of the amount of georeferenced data acquired - big data - the same will be represented on GIS (Geographic Information System) platforms as "open and updatable" thematic cartography, which can be integrated with further data collected both with of traditional Geomatics (GNSS receivers, motorized total station and 3D laser scanner) and innovative ones (remote sensing, Mobile Mapping Systems (road vehicles and UAVs)). This context also includes the establishment and updating of the Road Cadastre, introduced by the Ministerial Decree of 01/06/2001 No. 6, intended as an IT tool for archiving, viewing, querying and managing all the data that the body owner / manager owns on its own road network.


Author(s):  
Radhika Ravi ◽  
Darcy Bullock ◽  
Ayman Habib

Regular pavement monitoring over highways and airport runways is vital for public agencies to ensure the safe riding of vehicles and aircrafts. Highways are mostly subject to cracking and potholes along with a few instances of debris around construction work zones. Airports are also concerned with debris but have much lower tolerance for the presence of foreign object debris (FOD) that could possibly damage the aircraft. LiDAR is rapidly emerging in a variety of mobile mapping systems (MMS) and will likely be integrated into many transportation vehicles over the next decade for pavement inspection. This paper proposes a unique algorithm for pavement surface inspection with the help of MMS driven at highway speeds. The study analyzed LiDAR data acquired for 8 mi of highway collected at approximately 55 to 60 mph. This study indicates that an adequately designed MMS along with the proposed algorithm can efficiently detect pavement anomalies as small as 2 cm in the form of cracking, potholes, surface debris, or any combination of these. This is more than sufficient for highways, where debris such as ladders and tires are an order of magnitude larger. For evaluating the effectiveness of detecting smaller airport FOD, a validation dataset was created by driving the MMS at 15 mph adjacent to a debris field of 50 sample pieces of FOD collected from an airport. The study found that 100% of the FOD items larger than 2 cm in size (12 out of 50 samples) were detected successfully at 15 mph. Both datasets suggest that MMS LiDAR is sufficient for pavement inspection and as sensor fidelity increases, even small FOD will be able to be detected with the algorithm proposed in this paper.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yunsheng Wang ◽  
Antero Kukko ◽  
Eric Hyyppä ◽  
Teemu Hakala ◽  
Jiri Pyörälä ◽  
...  

Abstract Background Current automated forest investigation is facing a dilemma over how to achieve high tree- and plot-level completeness while maintaining a high cost and labor efficiency. This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle (UAV) that flies above and under canopies in a single operation. The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight, thus grants the access to simultaneous high completeness, high efficiency, and low cost. Results In the experiment, an approximately 0.5 ha forest was covered in ca. 10 min from takeoff to landing. The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems, which leads to a 2–4 cm RMSE of the diameter at the breast height estimates, and a 4–7 cm RMSE of the stem curve estimates. Conclusions Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective. Thus, it is a solution to combine the advantages of the terrestrial static, the mobile, and the above-canopy UAV observations, which is a promising step forward to achieve a fully autonomous in situ forest inventory. Future studies should be aimed to further improve the platform positioning, and to automatize the UAV operation.


2021 ◽  
Vol 15 (1) ◽  
pp. 13-30
Author(s):  
Tomas Thalmann ◽  
Hans Neuner

AbstractDespite the increasing interest in kinematic data acquisition, Robotic Total Stations (RTSs) are still relatively seldom used. No matter if Mobile Mapping Systems or Control & Guidance, GNSS is mostly used as position sensor, which limits the application to outdoor areas. For indoor applications, a combination of relative sensors is usually employed. One reason why RTSs are not used is the challenging time referencing and synchronization. In this work we analyze the challenges of a synchronized kinematic application of RTSs and present solutions.Our approach is based on a wireless network synchronization to establish a precise temporal reference frame. The achievable synchronization quality is thoroughly examined. In addition we develop a kinematic model of spherical measurements, that incorporates timing related parameters. To estimate these parameters we propose a temporal calibration utilizing an industrial robot. Both parts of our approach are evaluated using a test setup of two total stations, proofing an overall synchronization accuracy of 0.2 ms. An overall horizontal kinematic point accuracy of 2.3 mm reveals the potential of sufficiently synchronized RTSs.


2021 ◽  
Vol 13 (2) ◽  
pp. 237
Author(s):  
Norbert Pfeifer ◽  
Johannes Falkner ◽  
Andreas Bayr ◽  
Lothar Eysn ◽  
Camillo Ressl

Mobile mapping is in the process of becoming a routinely applied standard tool to support administration of cities. For ensuring the usability of the mobile mapping data it is necessary to have a practical method to evaluate the quality of different systems, which reaches beyond 3D accuracy of individual points. Such a method must be objective, easy to implement, and provide quantitative results to be used in tendering processes. We present such an approach which extracts quality figures for point density, point distribution, point cloud planarity, image resolution, and street sign legibility. In its practical application for the mobile mapping campaign of the City of Vienna (Austria) in 2020 the proposed test method proved to fulfill the above requirements. As an additional result, quality figures are reported for the panorama images and point clouds of three different mobile mapping systems.


Sign in / Sign up

Export Citation Format

Share Document