scholarly journals DRAWING AND LANDSCAPE SIMULATION FOR JAPANESE GARDEN BY USING TERRESTRIAL LASER SCANNER

Author(s):  
R. Kumazaki ◽  
Y. Kunii

Recently, many laser scanners are applied for various measurement fields. This paper investigates that it was useful to use the terrestrial laser scanner in the field of landscape architecture and examined a usage in Japanese garden. As for the use of 3D point cloud data in the Japanese garden, it is the visual use such as the animations. Therefore, some applications of the 3D point cloud data was investigated that are as follows. Firstly, ortho image of the Japanese garden could be outputted for the 3D point cloud data. Secondly, contour lines of the Japanese garden also could be extracted, and drawing was became possible. Consequently, drawing of Japanese garden was realized more efficiency due to achievement of laborsaving. Moreover, operation of the measurement and drawing could be performed without technical skills, and any observers can be operated. Furthermore, 3D point cloud data could be edited, and some landscape simulations that extraction and placement of tree or some objects were became possible. As a result, it can be said that the terrestrial laser scanner will be applied in landscape architecture field more widely.

Author(s):  
Avar Almukhtar ◽  
Henry Abanda ◽  
Zaid O. Saeed ◽  
Joseph H.M. Tah

The urgent need to improve performance in the construction industry has led to the adoption of many innovative technologies. 3D laser scanners are amongst the leading technologies being used to capture and process assets or construction project data for use in various applications. Due to its nascent nature, many questions are still unanswered about 3D laser scanning, which in turn contribute to the slow adaptation of the technology. Some of these include the role of 3D laser scanners in capturing and processing raw construction project data. How accurate is the 3D laser scanner or point cloud data? How does laser scanning fit with other wider emerging technologies such as Building Information Modelling (BIM)? This study adopts a proof-of-concept approach, which in addition to answering the afore-mentioned questions, illustrates the application of the technology in practice. The study finds that the quality of the data, commonly referred to as point cloud data is still a major issue as it depends on the distance between the target object and 3D laser scanner’s station. Additionally, the quality of the data is still very dependent on data file sizes and the computational power of the processing machine. Lastly, the connection between laser scanning and BIM approaches is still weak as what can be done with a point cloud data model in a BIM environment is still very limited. The aforementioned findings reinforce existing views on the use of 3D laser scanners in capturing and processing construction project data.


2019 ◽  
Vol 11 (6) ◽  
pp. 729 ◽  
Author(s):  
Shiyan Pang ◽  
Xiangyun Hu ◽  
Mi Zhang ◽  
Zhongliang Cai ◽  
Fengzhu Liu

Thanks to the recent development of laser scanner hardware and the technology of dense image matching (DIM), the acquisition of three-dimensional (3D) point cloud data has become increasingly convenient. However, how to effectively combine 3D point cloud data and images to realize accurate building change detection is still a hotspot in the field of photogrammetry and remote sensing. Therefore, with the bi-temporal aerial images and point cloud data obtained by airborne laser scanner (ALS) or DIM as the data source, a novel building change detection method combining co-segmentation and superpixel-based graph cuts is proposed in this paper. In this method, the bi-temporal point cloud data are firstly combined to achieve a co-segmentation to obtain bi-temporal superpixels with the simple linear iterative clustering (SLIC) algorithm. Secondly, for each period of aerial images, semantic segmentation based on a deep convolutional neural network is used to extract building areas, and this is the basis for subsequent superpixel feature extraction. Again, with the bi-temporal superpixel as the processing unit, a graph-cuts-based building change detection algorithm is proposed to extract the changed buildings. In this step, the building change detection problem is modeled as two binary classifications, and acquisition of each period’s changed buildings is a binary classification, in which the changed building is regarded as foreground and the other area as background. Then, the graph cuts algorithm is used to obtain the optimal solution. Next, by combining the bi-temporal changed buildings and digital surface models (DSMs), these changed buildings are further classified as “newly built,” “taller,” “demolished”, and “lower”. Finally, two typical datasets composed of bi-temporal aerial images and point cloud data obtained by ALS or DIM are used to validate the proposed method, and the experiments demonstrate the effectiveness and generality of the proposed algorithm.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ronghao Li ◽  
Guochao Bu ◽  
Pei Wang

Tree skeleton could describe the shape and topological structure of a tree, which are useful to forest researchers. Terrestrial laser scanner (TLS) can scan trees with high accuracy and speed to acquire the point cloud data, which could be used to extract tree skeletons. An adaptive extracting method of tree skeleton based on the point cloud data of TLS was proposed in this paper. The point cloud data were segmented by artificial filtration and k-means clustering, and the point cloud data of trunk and branches remained to extract skeleton. Then the skeleton nodes were calculated by using breadth first search (BFS) method, quantifying method, and clustering method. Based on their connectivity, the skeleton nodes were connected to generate the tree skeleton, which would be smoothed by using Laplace smoothing method. In this paper, the point cloud data of a toona tree and peach tree were used to test the proposed method and for comparing the proposed method with the shortest path method to illustrate the robustness and superiority of the method. The experimental results showed that the shape of tree skeleton extracted was consistent with the real tree, which showed the method proposed in the paper is effective and feasible.


2017 ◽  
Vol 28 (10) ◽  
pp. 105001 ◽  
Author(s):  
Prem Rachakonda ◽  
Bala Muralikrishnan ◽  
Luc Cournoyer ◽  
Geraldine Cheok ◽  
Vincent Lee ◽  
...  

2015 ◽  
Vol 3 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Morteza Heidari Mozaffar ◽  
Masood Varshosaz ◽  
Mohammad Saadatseresht ◽  
◽  
◽  
...  

Author(s):  
O. Ajioka ◽  
Y. Hori

Mosaic floors of surviving buildings in Ostia have been mainly recorded in photographs. From 2008, Japanese research group carries out a project of 3d measuring of the whole structure of ancient Roman city Ostia using laser scanners, including its landscape, city blocks, streets, buildings, wall paintings and mosaics. The laser scanner allows for a more detailed analysis and a greater potential for recording mosaics. We can record the data of mosaics, which are described piece by piece. However it is hard to acquire enough high dense point cloud and the internal camera of the laser scanner produce low quality images. We introduce a possible technology of 3D recording of mosaics with high-quality colour information; SFM. The use of this technique permits us to create 3D models from images provided from a CCD camera without heavy and large laser scanners. We applied SFM system to different three types of the mosaics laid down on the floors of "the House of the Dioscuroi", "the Insula of the Muse" and "the House of Jove and Ganymede", and created high resolution orthographic images. Then we examined to compare these orthographic images with that are created from the point cloud data. As a result, we confirmed that SFM system has sufficient practical utility for the mosaic research. And we present how much of density of point cloud or ground resolution are required for the documentation of mosaics accurately.


Sign in / Sign up

Export Citation Format

Share Document