scholarly journals Reality Capture of Buildings Using 3D Laser Scanners

Author(s):  
Avar Almukhtar ◽  
Henry Abanda ◽  
Zaid O. Saeed ◽  
Joseph H.M. Tah

The urgent need to improve performance in the construction industry has led to the adoption of many innovative technologies. 3D laser scanners are amongst the leading technologies being used to capture and process assets or construction project data for use in various applications. Due to its nascent nature, many questions are still unanswered about 3D laser scanning, which in turn contribute to the slow adaptation of the technology. Some of these include the role of 3D laser scanners in capturing and processing raw construction project data. How accurate is the 3D laser scanner or point cloud data? How does laser scanning fit with other wider emerging technologies such as Building Information Modelling (BIM)? This study adopts a proof-of-concept approach, which in addition to answering the afore-mentioned questions, illustrates the application of the technology in practice. The study finds that the quality of the data, commonly referred to as point cloud data is still a major issue as it depends on the distance between the target object and 3D laser scanner’s station. Additionally, the quality of the data is still very dependent on data file sizes and the computational power of the processing machine. Lastly, the connection between laser scanning and BIM approaches is still weak as what can be done with a point cloud data model in a BIM environment is still very limited. The aforementioned findings reinforce existing views on the use of 3D laser scanners in capturing and processing construction project data.

CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 214-235
Author(s):  
Avar Almukhtar ◽  
Zaid O. Saeed ◽  
Henry Abanda ◽  
Joseph H.M. Tah

The urgent need to improve performance in the construction industry has led to the adoption of many innovative technologies. 3D laser scanners are amongst the leading technologies being used to capture and process assets or construction project data for use in various applications. Due to its nascent nature, many questions are still unanswered about 3D laser scanning, which in turn contribute to the slow adaptation of the technology. Some of these include the role of 3D laser scanners in capturing and processing raw construction project data. How accurate are the 3D laser scanner or point cloud data? How does laser scanning fit with other wider emerging technologies such as building information modeling (BIM)? This study adopts a proof-of-concept approach, which in addition to answering the aforementioned questions, illustrates the application of the technology in practice. The study finds that the quality of the data, commonly referred to as point cloud data, is still a major issue as it depends on the distance between the target object and 3D laser scanner’s station. Additionally, the quality of the data is still very dependent on data file sizes and the computational power of the processing machine. Lastly, the connection between laser scanning and BIM approaches is still weak as what can be done with a point cloud data model in a BIM environment is still very limited. The aforementioned findings reinforce existing views on the use of 3D laser scanners in capturing and processing construction project data.


Author(s):  
O. Ajioka ◽  
Y. Hori

Mosaic floors of surviving buildings in Ostia have been mainly recorded in photographs. From 2008, Japanese research group carries out a project of 3d measuring of the whole structure of ancient Roman city Ostia using laser scanners, including its landscape, city blocks, streets, buildings, wall paintings and mosaics. The laser scanner allows for a more detailed analysis and a greater potential for recording mosaics. We can record the data of mosaics, which are described piece by piece. However it is hard to acquire enough high dense point cloud and the internal camera of the laser scanner produce low quality images. We introduce a possible technology of 3D recording of mosaics with high-quality colour information; SFM. The use of this technique permits us to create 3D models from images provided from a CCD camera without heavy and large laser scanners. We applied SFM system to different three types of the mosaics laid down on the floors of "the House of the Dioscuroi", "the Insula of the Muse" and "the House of Jove and Ganymede", and created high resolution orthographic images. Then we examined to compare these orthographic images with that are created from the point cloud data. As a result, we confirmed that SFM system has sufficient practical utility for the mosaic research. And we present how much of density of point cloud or ground resolution are required for the documentation of mosaics accurately.


2013 ◽  
Vol 405-408 ◽  
pp. 3032-3036
Author(s):  
Yi Bo Sun ◽  
Xin Qi Zheng ◽  
Zong Ren Jia ◽  
Gang Ai

At present, most of the commercial 3D laser scanning measurement systems do work for a large area and a big scene, but few shows their advantage in the small area or small scene. In order to solve this shortage, we design a light-small mobile 3D laser scanning system, which integrates GPS, INS, laser scanner and digital camera and other sensors, to generate the Point Cloud data of the target through data filtering and fusion. This system can be mounted on airborne or terrestrial small mobile platform and enables to achieve the goal of getting Point Cloud data rapidly and reconstructing the real 3D model. Compared to the existing mobile 3D laser scanning system, the system we designed has high precision but lower cost, smaller hardware and more flexible.


2012 ◽  
Vol 204-208 ◽  
pp. 618-621
Author(s):  
Bao Xing Zhou ◽  
Jian Ping Yue ◽  
Jin Li

Terrestrial laser scanner (TLS) can provide the measurement of a large number of physical points distributed on the observed surface. A fast earthwork calculating method is proposed based on the redundant number of acquired points, which leads to a very accurate and high resolution reconstruction of the observed surfaces. This paper describes the three main steps of the method, namely the acquisition of the earthwork data based on TLS, the pre-processing of point cloud data, the earthwork calculation and accuracy evaluation based on point cloud data. Furthermore, it illustrates the performance of the proposed method with a validation experiment.


2015 ◽  
Vol 752-753 ◽  
pp. 1401-1405 ◽  
Author(s):  
Hong Jun Ni ◽  
Qing Qing Chen ◽  
Yi Pei ◽  
Yi Lv ◽  
Xing Xing Wang

Model design and rapid prototyping are utilized to manufacture push-ups frame. Point cloud data can be obtained by scanning parts with hand-held laser scanner, and imported into the Imageware to process. The varied points are removed, the missing points are repaired, and then the 3D model is designed through the Pro/E. Finally, the frame model is completed by rapid prototyping printers. The manufacturing period is shorten through the way of putting two technologies in the field of manufacturing together, the production requirements are met, and the business efficiency is improved.


Author(s):  
Gülhan Benli

Since the 2000s, terrestrial laser scanning, as one of the methods used to document historical edifices in protected areas, has taken on greater importance because it mitigates the difficulties associated with working on large areas and saves time while also making it possible to better understand all the particularities of the area. Through this technology, comprehensive point data (point clouds) about the surface of an object can be generated in a highly accurate three-dimensional manner. Furthermore, with the proper software this three-dimensional point cloud data can be transformed into three-dimensional rendering/mapping/modeling and quantitative orthophotographs. In this chapter, the study will present the results of terrestrial laser scanning and surveying which was used to obtain three-dimensional point clouds through three-dimensional survey measurements and scans of silhouettes of streets in Fatih in Historic Peninsula in Istanbul, which were then transposed into survey images and drawings. The study will also cite examples of the facade mapping using terrestrial laser scanning data in Istanbul Historic Peninsula Project.


2020 ◽  
Vol 10 (23) ◽  
pp. 8680
Author(s):  
Huimin Li ◽  
Chengyi Zhang ◽  
Siyuan Song ◽  
Sevilay Demirkesen ◽  
Ruidong Chang

Quality control is essential to a successful modular construction project and should be enhanced throughout the project from design to construction and installation. The current methods for analyzing the assembly quality of a removable floodwall heavily rely on manual inspection and contact-type measurements, which are time-consuming and costly. This study presents a systematic and practical approach to improve quality control of the prefabricated modular construction projects by integrating building information modeling (BIM) with three-dimensional (3D) laser scanning technology. The study starts with a thorough literature review of current quality control methods in modular construction. Firstly, the critical quality control procedure for the modular construction structure and components should be identified. Secondly, the dimensions of the structure and components in a BIM model is considered as quality tolerance control benchmarking. Thirdly, the point cloud data is captured with 3D laser scanning, which is used to create the as-built model for the constructed structure. Fourthly, data analysis and field validation are carried out by matching the point cloud data with the as-built model and the BIM model. Finally, the study employs the data of a removable floodwall project to validate the level of technical feasibility and accuracy of the presented methods. This method improved the efficiency and accuracy of modular construction quality control. It established a preliminary foundation for using BIM and laser scanning to conduct quality control in removable floodwall installation. The results indicated that the proposed integration of BIM and 3D laser scanning has great potential to improve the quality control of a modular construction project.


2020 ◽  
Vol 13 (1) ◽  
pp. 55
Author(s):  
Paweł Trybała ◽  
Jan Blachowski ◽  
Ryszard Błażej ◽  
Radosław Zimroz

Usually, substantial part of a mine haulage system is based on belt conveyors. Reliability of such system is significant in terms of mining operation continuity and profitability. Numerous methods for conveyor belt monitoring have been developed, although many of them require physical presence of the monitoring staff in the dangerous environment. In this paper, a remote sensing method for assessing a conveyor belt condition using the Terrestrial Laser Scanner (TLS) system has been described. For this purpose a methodology of semi-automatic processing of point cloud data for obtaining the belt geometry has been developed. The sample data has been collected in a test laboratory and processed with the proposed algorithms. Damaged belt surface areas have been successfully identified and edge defects were investigated. The proposed non-destructive testing methodology has been found to be suitable for monitoring the general condition of the conveyor belt and could be exceptionally successful and cost-effective if combined with an unmanned, robotic inspection system.


Author(s):  
Hoang Long Nguyen ◽  
David Belton ◽  
Petra Helmholz

The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Peerasit Mahasuwanchai ◽  
Chainarong Athisakul ◽  
Phasu Sairuamyat ◽  
Weerachart Tangchirapat ◽  
Sutat Leelataviwat ◽  
...  

This article presents an alternative method for the long-term monitoring of heritage pagodas in Thailand. In this method, terrestrial laser scanning (TLS) is used in combination with permanent survey markers. The Wat (temple) Krachee in the Ayutthaya Province of Thailand was chosen as a case study. This temple has several fantastic elements, including an inverted bell-shaped pagoda, two intertwined trees growing within it, and a chamber inside the pagoda. The preservation team working on the pagoda encountered a challenging problem and faced a decision to trim or not to trim the tree since it has a long-term effect on the pagoda’s structural stability. A high-accuracy terrestrial laser scanner was used to collect three-dimensional point cloud data. Permanent survey markers were constructed in 2018 to be used in long-term monitoring. The 3D surveying of the temple and the monitoring of the pagoda were carried out in five sessions during a period ending in 2020. A point cloud data analysis was performed to obtain the current dimensions, a displacement analysis, and the pagoda leaning angle. The results revealed that the terrestrial laser scanner is a high-performance piece of equipment offering efficient evaluation and long-term monitoring. However, in this study, permanent survey markers were also required as a benchmark for constraining each monitoring session. The 3D point cloud models could be matched with the assumption model elements to evaluate the damaged shape and to determine the original form. The significant elements of an inverted bell-shaped pagoda were investigated. Trimming the tree was found to cause the leaning angle of the pagoda to decrease. An equation was developed for predicting the leaning angle of the Wat Krachee pagoda for preservation and restoration planning in the future. From the results of this study, it is recommended that periodic monitoring should continue in order to preserve Thai pagodas in their original forms.


Sign in / Sign up

Export Citation Format

Share Document