scholarly journals Invited perspectives. A hydrological look to precipitation intensity duration thresholds for landslide initiation: proposing hydro-meteorological thresholds

Author(s):  
Thom Bogaard ◽  
Roberto Greco

Abstract. The vast majority of shallow landslides and debris flows are precipitation initiated. Therefore, regional landslide hazard assessment is often based on empirically derived precipitation-intensity-duration (PID) thresholds and landslide inventories. Generally, two features of precipitation events are plotted and labelled with (shallow) landslide occurrence or non-occurrence. Hereafter, a separation line or zone is drawn, mostly in logarithmic space. The practical background of PID is that often only meteorological information is available when analyzing (non-) occurrence of shallow landslides and, at the same time, the conceptual idea is that precipitation information is a good proxy for both meteorological trigger and hydrological cause. Although applied in many case studies, this approach suffers from indistinct threshold, many false positives as well as limited physical process understanding. Some first steps towards a more hydrologically based approach have been proposed in the past, but these efforts received limited follow-up. Therefore, the objective of our paper is to: (a) critically analyse the concept of PID thresholds for shallow landslides and debris flows from a hydro-meteorological point of view, and (b) propose a novel trigger-cause conceptual framework for lumped regional hydro-meteorological hazard assessment. We will discuss this based on the published examples and associated discussion. We discuss the PID thresholds in relation to return periods of precipitation, soil physics and slope and catchment water balance. With this paper, we aim to contribute to the development of a stronger conceptual model for regional landslide hazard assessment based on physical process understanding and empirical data.

2018 ◽  
Vol 18 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Thom Bogaard ◽  
Roberto Greco

Abstract. Many shallow landslides and debris flows are precipitation initiated. Therefore, regional landslide hazard assessment is often based on empirically derived precipitation intensity-duration (ID) thresholds and landslide inventories. Generally, two features of precipitation events are plotted and labeled with (shallow) landslide occurrence or non-occurrence. Hereafter, a separation line or zone is drawn, mostly in logarithmic space. The practical background of ID is that often only meteorological information is available when analyzing (non-)occurrence of shallow landslides and, at the same time, it could be that precipitation information is a good proxy for both meteorological trigger and hydrological cause. Although applied in many case studies, this approach suffers from many false positives as well as limited physical process understanding. Some first steps towards a more hydrologically based approach have been proposed in the past, but these efforts received limited follow-up. Therefore, the objective of our paper is to (a) critically analyze the concept of precipitation ID thresholds for shallow landslides and debris flows from a hydro-meteorological point of view and (b) propose a trigger–cause conceptual framework for lumped regional hydro-meteorological hazard assessment based on published examples and associated discussion. We discuss the ID thresholds in relation to return periods of precipitation, soil physics, and slope and catchment water balance. With this paper, we aim to contribute to the development of a stronger conceptual model for regional landslide hazard assessment based on physical process understanding and empirical data.


2021 ◽  
Author(s):  
Bastien Colas ◽  
Yannick Thiery ◽  
Yaël Guyomard ◽  
Mathieu Mengin ◽  
Olivier Monge ◽  
...  

<p>Requiring spatial and temporal quantified information on landslide hazard over a large area is a prerequisite to forecast them. However, in many cases, the quantification remains partial, because of a lack of information on the phenomena, on predisposing and triggering factors or because the scientific approaches used in research domain are complex to apply in a regulatory framework. Thus, in this context, for many sites and end-users, the documents produced by empirical methods are used, without quantification of hazards.</p><p>In 2019, a collaboration between the DIMENC Geological Survey Service of New-Caledonia (South-Pacific) and the BRGM planed the development of a global methodology of landslide hazard assessment at the 1:25,000 scale of work according to the recommendations of the JTC-1. Indeed, landslide hazard in New Caledonia is insufficiently assessed and few taken into account in land-use planning. However, this large mountainous island is regularly affected by different type of instabilities (i.e. rock-falls; rock-slides; slides; debris-flows) due to intense rainfalls. The consequences can be material and human, as in 2016 for the municipality of Houaïlou, where debris-flows occurred, inducing 5 deaths, 3 missing persons, 8 injuries along with large material damages. Few heuristic landslide hazard maps based on expert opinion are available, but the methodology is not homogeneous and harmonized. Therefore, even if these maps constitute a solid base of knowledge, their valorization for land use planning remains difficult.</p><p>To overcome these shortcomings, the methodology chosen is quantitative, taking into account the susceptibility of the territory (i.e. spatial probability of phenomena occurrence with discrimination of initiation and run-out), the temporal probability of occurrence (i.e. from diachronic analyses) and the phenomena intensity (i.e. through the considered velocity of runout and the potential of induced damages). The methodology is declined by type of phenomena and is based on a comprehensive inventory. Six main steps are defined with:</p><ul><li>An inventory of the events by visual remote sensing and field observations;</li> <li>Discriminated mapping of bedrock and surficial formations (i.e. regolith: weathered formations and gravitational deposits);</li> <li>Computation of each landslide initiation susceptibility by a bivariate method;</li> <li>Integration of the temporal occurrence probability;</li> <li>Computation of the phenomena runout by a numerical approach taking into account the reach angle;</li> <li>Integration of the intensity of the phenomena according to the estimated volumes and/or velocity to quantify landslide hazard.</li> </ul><p>The classes of spatial and temporal probabilities are based on the JTC-1 agreement and allow obtaining quantified hazard maps. The validation of the results is performed by a field validation, by phenomena not used for the computations, and by statistical tests. The method is tested in the municipality of Mont-Dore (643 km²), which was heavily impacted in 1988 by cyclone 'Anne'. Beyond the fact that the methodology will be applied throughout the territory in an operational framework and will allow the adaptation of local planning, the project allows the improvement of:</p><ul><li>Knowledge of the different kind of landslides in a volcano-sedimentary and metamorphic context strongly weathered;</li> <li>Knowledge of the regolith, which newly integrated for this type of analysis for the island’s municipalities.</li> </ul>


2005 ◽  
Vol 29 (4) ◽  
pp. 548-567 ◽  
Author(s):  
Wang Huabin ◽  
Liu Gangjun ◽  
Xu Weiya ◽  
Wang Gonghui

In recent years, landslide hazard assessment has played an important role in developing land utilization regulations aimed at minimizing the loss of lives and damage to property. A variety of approaches has been used in landslide assessment and these can be classified into qualitative factor overlay, statistical models, geotechnical process models, etc. However, there is little work on the satisfactory integration of these models with geographic information systems (GIS) to support slope management and landslide hazard mitigation. This paper deals with several aspects of landslide hazard assessment by presenting a focused review of GIS-based landslide hazard assessment: it starts with a framework for GIS-based assessment of landslide hazard; continues with a critical review of the state of the art in using GIS and digital elevation models (DEM) for mapping and modelling landslide hazards; and concludes with a description of an integrated system for effective landslide hazard assessment and zonation incorporating artificial intelligence and data mining technology in a GIS-based framework of knowledge discovery.


Sign in / Sign up

Export Citation Format

Share Document