scholarly journals A 30 m scale modeling of extreme gusts during Hurricane Irma (2017) landfall on very small mountainous islands in the Lesser Antilles

2021 ◽  
Vol 21 (1) ◽  
pp. 129-145
Author(s):  
Raphaël Cécé ◽  
Didier Bernard ◽  
Yann Krien ◽  
Frédéric Leone ◽  
Thomas Candela ◽  
...  

Abstract. In view of the high vulnerability of the small islands of the Lesser Antilles to cyclonic hazards, realistic very fine scale numerical simulation of hurricane-induced winds is essential to prevent and manage risks. The present innovative modeling aims at combining the most realistically simulated strongest gusts driven by tornado-scale vortices within the eyewall and the most realistic complex terrain effects. The Weather Research and Forecasting (WRF) model with the nonlinear backscatter and anisotropy (NBA) large eddy simulation (LES) configuration was used to reconstruct the devastating landfall of category 5 Hurricane Irma (2017) on Saint Barthélemy and Saint Martin. The results pointed out that the 30 m scale seems necessary to simulate structures of multiple subtornadic-scale vortices leading to extreme peak gusts of 132 m s−1 over the sea. Based on the literature, such extreme gust values have already been observed and are expected for category 5 hurricanes like Irma. Risk areas associated with terrain gust speed-up factors greater than 1 have been identified for the two islands. The comparison between the simulated gusts and the remote sensing building damage highlighted the major role of structure strength linked with the socio-economic development of the territory. The present modeling method could be easily extended to other small mountainous islands to improve the understanding of observed past damage and to develop safer urban management and appropriate building standards.

2020 ◽  
Author(s):  
Raphaël Cécé ◽  
Didier Bernard ◽  
Yann Krien ◽  
Frédéric Leone ◽  
Thomas Candela ◽  
...  

Abstract. In view of the high vulnerability of the Lesser Antilles small islands to cyclonic hazards, realistic very fine scale numerical simulation of hurricane-induced winds is essential to prevent and manage risks. The present innovative modeling aims at combining the most realistic simulated strongest gusts driven by tornado-scale vortices within the eyewall and the most realistic complex terrain effects. The Weather Research and Forecasting (WRF) model with the Nonlinear Backscatter and Anisotropy (NBA) Large Eddy Simulation (LES) configuration was used to reconstruct the devastating landfall of category 5 Hurricane Irma (2017) on Saint Barthélemy and Saint Martin islands. The results pointed out that the 30-m scale seems necessary to simulate intense 400-m scale vortices leading to extreme peak gusts like 132 m s−1 over sea. Risk areas associated with terrain gust speed-up factors greater than one have been identified for the two islands. The comparison between the simulated gusts and the remote sensing building damages highlighted the major role of structure strength linked with the socio-economic development of the territory. The present modeling method could be easily extended to other small mountainous islands to improve the understanding of observed past damages and to develop safer urban management and appropriate building standards.


2018 ◽  
Vol 146 (3) ◽  
pp. 833-851 ◽  
Author(s):  
Wei Huang ◽  
J.-W. Bao ◽  
Xu Zhang ◽  
Baode Chen

ABSTRACT The authors coarse-grained and analyzed the output from a large-eddy simulation (LES) of an idealized extratropical supercell storm using the Weather Research and Forecasting (WRF) Model with various horizontal resolutions (200 m, 400 m, 1 km, and 3 km). The coarse-grained physical properties of the simulated convection were compared with explicit WRF simulations of the same storm at the same resolution of coarse-graining. The differences between the explicit simulations and the coarse-grained LES output increased as the horizontal grid spacing in the explicit simulation coarsened. The vertical transport of the moist static energy and total hydrometeor mixing ratio in the explicit simulations converged to the LES solution at the 200-m grid spacing. Based on the analysis of the coarse-grained subgrid vertical flux of the moist static energy, the authors confirmed that the nondimensional subgrid vertical flux of the moist static energy varied with the subgrid fractional cloudiness according to a function of fractional cloudiness, regardless of the box size. The subgrid mass flux could not account for most of the total subgrid vertical flux of the moist static energy because the eddy-transport component associated with the internal structural inhomogeneity of convective clouds was of a comparable magnitude. This study highlights the ongoing challenge in developing scale-aware parameterizations of subgrid convection.


2020 ◽  
Author(s):  
Gokhan Kirkil

<p>WRF model provides a potentially powerful framework for coupled simulations of flow covering a wide range of<br>spatial and temporal scales via a successive grid nesting capability. Nesting can be repeated down to turbulence<br>solving large eddy simulation (LES) scales, providing a means for significant improvements of simulation of<br>turbulent atmospheric boundary layers. We will present the recent progress on our WRF-LES simulations of<br>the Perdigao Experiment performed over mountainous terrain. We performed multi-scale simulations using<br>WRF’s different Planetary Boundary Layer (PBL) parameterizations as well as Large Eddy Simulation (LES)<br>and compared the results with the detailed field measurements. WRF-LES model improved the mean flow field<br>as well as second-order flow statistics. Mean fluctuations and turbulent kinetic energy fields from WRF-LES<br>solution are investigated in several cross-sections around the hill which shows good agreement with measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document