scholarly journals Urban search and rescue (USAR) simulation system: spatial strategies for agent task allocation under uncertain conditions

2021 ◽  
Vol 21 (11) ◽  
pp. 3449-3463
Author(s):  
Navid Hooshangi ◽  
Ali Asghar Alesheikh ◽  
Mahdi Panahi ◽  
Saro Lee

Abstract. Task allocation under uncertain conditions is a key problem for agents attempting to achieve harmony in disaster environments. This paper presents an agent-based simulation to investigate task allocation considering appropriate spatial strategies to manage uncertainty in urban search and rescue (USAR) operations. The proposed method is based on the contract net protocol (CNP) and implemented over five phases: ordering existing tasks considering intrinsic interval uncertainty, finding a coordinating agent, holding an auction, applying allocation strategies (four strategies), and implementing and observing the real environment. Applying allocation strategies is the main innovation of the method. The methodology was evaluated in Tehran's District 1 for 6.6, 6.9, and 7.2 magnitude earthquakes. The simulation began by calculating the numbers of injured individuals, which were 28 856, 73 195, and 111 463 people for each earthquake, respectively. Simulations were performed for each scenario for a variety of rescuers (1000, 1500, and 2000 rescuers). In comparison with the CNP, the standard duration of rescue operations with the proposed approach exhibited at least 13 % improvement, with a maximal improvement of 21 %. Interval uncertainty analysis and comparison of the proposed strategies showed that increased uncertainty led to increased rescue time for the CNP and strategies 1 to 4. The time increase was less with the uniform distribution strategy (strategy 4) than with the other strategies. The consideration of strategies in the task allocation process, especially spatial strategies, facilitated both optimization and increased flexibility of the allocation. It also improved conditions for fault tolerance and agent-based cooperation stability in the USAR simulation system.

2020 ◽  
Author(s):  
Navid Hooshangi ◽  
Ali Asghar Alesheikh ◽  
Mahdi Panahi ◽  
Saro Lee

Abstract. Task allocation in uncertainty conditions is a key problem for agents attempting to achieve harmony in disaster environments. This paper presents an agent- based simulation to investigate tasks allocation through the consideration of appropriate spatial strategies to deal with uncertainty in urban search and rescue (USAR) operation. The proposed method is presented in five phases: ordering existing tasks, finding coordinating agent, holding an auction, applying allocation strategies, and implementation and observation of environmental uncertainties. The methodology was evaluated in Tehran's District 1 for 6.6, 6.9, and 7.2 magnitude earthquakes. The simulation started by calculating the number of injured individuals, which was 28856, 73195 and 111463 people for each earthquake, respectively. The Simulations were performed for each scenario for a variety of rescuers (1000, 1500, 2000 rescuer). In comparison with contract net protocol (CNP), the standard time of rescue operations in the proposed approach includes at least 13% of improvement and the best percentage of recovery was 21 %. Interval uncertainty analysis and the comparison of the proposed strategies showed that an increase in uncertainty leads to an increased rescue time for CNP of 67.7 hours, and for strategies one to four an increased rescue time of 63.4, 63.2, 63.7, and 56.5 hours, respectively. Considering strategies in the task allocation process, especially spatial strategies, resulted in the optimization and increased flexibility of the allocation as well as conditions for fault tolerance and agent-based cooperation stability in USAR simulation system.


Author(s):  
Ruben Martin Garcia ◽  
Daniel Hernandez de la Iglesia ◽  
Juan F. de Paz ◽  
Valderi R. Q. Leithardt ◽  
Gabriel Villarrubia

Author(s):  
Alina Tausch ◽  
Annette Kluge

AbstractNew technologies are ever evolving and have the power to change human work for the better or the worse depending on the implementation. For human–robot interaction (HRI), it is decisive how humans and robots will share tasks and who will be in charge for decisions on task allocation. The aim of this online experiment was to examine the influence of different decision agents on the perception of a task allocation process in HRI. We assume that inclusion of the worker in the allocation will create more perceived work resources and will lead to more satisfaction with the allocation and the work results than a decision made by another agent. To test these hypotheses, we used a fictional production scenario where tasks were allocated to the participant and a robot. The allocation decision was either made by the robot, by an organizational unit, or by the participants themselves. We then looked for differences between those conditions. Our sample consisted of 151 people. In multiple ANOVAs, we could show that satisfaction with the allocation process, the solution, and with the result of the work process was higher in the condition where participants themselves were given agency in the allocation process compared to the other two. Those participants also experienced more task identity and autonomy. This has implications for the design of allocation processes: The inclusion of workers in task allocation can play a crucial role in leveraging the acceptance of HRI and in designing humane work systems in Industry 4.0.


2012 ◽  
Vol 19 (3) ◽  
pp. 46-56 ◽  
Author(s):  
Teodor Tomic ◽  
Korbinian Schmid ◽  
Philipp Lutz ◽  
Andreas Domel ◽  
Michael Kassecker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document