scholarly journals A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)

2014 ◽  
Vol 21 (1) ◽  
pp. 303-323 ◽  
Author(s):  
N. Gustafsson ◽  
J. Bojarova ◽  
O. Vignes

Abstract. A hybrid variational ensemble data assimilation has been developed on top of the HIRLAM variational data assimilation. It provides the possibility of applying a flow-dependent background error covariance model during the data assimilation at the same time as full rank characteristics of the variational data assimilation are preserved. The hybrid formulation is based on an augmentation of the assimilation control variable with localised weights to be assigned to a set of ensemble member perturbations (deviations from the ensemble mean). The flow-dependency of the hybrid assimilation is demonstrated in single simulated observation impact studies and the improved performance of the hybrid assimilation in comparison with pure 3-dimensional variational as well as pure ensemble assimilation is also proven in real observation assimilation experiments. The performance of the hybrid assimilation is comparable to the performance of the 4-dimensional variational data assimilation. The sensitivity to various parameters of the hybrid assimilation scheme and the sensitivity to the applied ensemble generation techniques are also examined. In particular, the inclusion of ensemble perturbations with a lagged validity time has been examined with encouraging results.

2015 ◽  
Vol 144 (1) ◽  
pp. 149-169 ◽  
Author(s):  
Juanzhen Sun ◽  
Hongli Wang ◽  
Wenxue Tong ◽  
Ying Zhang ◽  
Chung-Yi Lin ◽  
...  

Abstract The momentum variables of streamfunction and velocity potential are used as control variables in a number of operational variational data assimilation systems. However, in this study it is shown that, for limited-area high-resolution data assimilation, the momentum control variables ψ and χ (ψχ) pose potential difficulties in background error modeling and, hence, may result in degraded analysis and forecast when compared with the direct use of x and y components of wind (UV). In this study, the characteristics of the modeled background error statistics, derived from an ensemble generated from Weather Research and Forecasting (WRF) Model real-time forecasts of two summer months, are first compared between the two control variable options. Assimilation and forecast experiments are then conducted with both options for seven convective events in a domain that encompasses the Rocky Mountain Front Range using the three-dimensional variational data assimilation (3DVar) system of the WRF Model. The impacts of the two control variable options are compared in terms of their skills in short-term qualitative precipitation forecasts. Further analysis is performed for one case to examine the impacts when radar observations are included in the 3DVar assimilation. The main findings are as follows: 1) the background error modeling used in WRF 3DVar with the control variables ψχ increases the length scale and decreases the variance for u and υ, which causes negative impact on the analysis of the velocity field and on precipitation prediction; 2) the UV-based 3DVar allows closer fits to radar wind observations; and 3) the use of UV control variables improves the 0–12-h precipitation prediction.


2013 ◽  
Vol 141 (12) ◽  
pp. 4350-4372 ◽  
Author(s):  
Craig S. Schwartz ◽  
Zhiquan Liu ◽  
Xiang-Yu Huang ◽  
Ying-Hwa Kuo ◽  
Chin-Tzu Fong

Abstract The Weather Research and Forecasting Model (WRF) “hybrid” variational-ensemble data assimilation (DA) algorithm was used to initialize WRF model forecasts of three tropical cyclones (TCs). The hybrid-initialized forecasts were compared to forecasts initialized by WRF's three-dimensional variational (3DVAR) DA system. An ensemble adjustment Kalman filter (EAKF) updated a 32-member WRF-based ensemble system that provided flow-dependent background error covariances for the hybrid. The 3DVAR, hybrid, and EAKF configurations cycled continuously for ~3.5 weeks and produced new analyses every 6 h that initialized 72-h WRF forecasts with 45-km horizontal grid spacing. Additionally, the impact of employing a TC relocation technique and using multiple outer loops (OLs) in the 3DVAR and hybrid minimizations were explored. Model output was compared to conventional, dropwindsonde, and TC “best track” observations. On average, the hybrid produced superior forecasts compared to 3DVAR when only one OL was used during minimization. However, when three OLs were employed, 3DVAR forecasts were dramatically improved but the mean hybrid performance changed little. Additionally, incorporation of TC relocation within the cycling systems further improved the mean 3DVAR-initialized forecasts but the average hybrid-initialized forecasts were nearly unchanged.


2014 ◽  
Vol 142 (2) ◽  
pp. 716-738 ◽  
Author(s):  
Craig S. Schwartz ◽  
Zhiquan Liu

Abstract Analyses with 20-km horizontal grid spacing were produced from parallel continuously cycling three-dimensional variational (3DVAR), ensemble square root Kalman filter (EnSRF), and “hybrid” variational–ensemble data assimilation (DA) systems between 0000 UTC 6 May and 0000 UTC 21 June 2011 over a domain spanning the contiguous United States. Beginning 9 May, the 0000 UTC analyses initialized 36-h Weather Research and Forecasting Model (WRF) forecasts containing a large convection-permitting 4-km nest. These 4-km 3DVAR-, EnSRF-, and hybrid-initialized forecasts were compared to benchmark WRF forecasts initialized by interpolating 0000 UTC Global Forecast System (GFS) analyses onto the computational domain. While important differences regarding mean state characteristics of the 20-km DA systems were noted, verification efforts focused on the 4-km precipitation forecasts. The 3DVAR-, hybrid-, and EnSRF-initialized 4-km precipitation forecasts performed similarly regarding general precipitation characteristics, such as timing of the diurnal cycle, and all three forecast sets had high precipitation biases at heavier rainfall rates. However, meaningful differences emerged regarding precipitation placement as quantified by the fractions skill score. For most forecast hours, the hybrid-initialized 4-km precipitation forecasts were better than the EnSRF-, 3DVAR-, and GFS-initialized forecasts, and the improvement was often statistically significant at the 95th percentile. These results demonstrate the potential of limited-area continuously cycling hybrid DA configurations and suggest additional hybrid development is warranted.


2015 ◽  
Vol 143 (5) ◽  
pp. 1583-1600 ◽  
Author(s):  
Florian Harnisch ◽  
Christian Keil

Abstract A kilometer-scale ensemble data assimilation system (KENDA) based on a local ensemble transform Kalman filter (LETKF) has been developed for the Consortium for Small-Scale Modeling (COSMO) limited-area model. The data assimilation system provides an analysis ensemble that can be used to initialize ensemble forecasts at a horizontal grid resolution of 2.8 km. Convective-scale ensemble forecasts over Germany using ensemble initial conditions derived by the KENDA system are evaluated and compared to operational forecasts with downscaled initial conditions for a short summer period during June 2012. The choice of the inflation method applied in the LETKF significantly affects the ensemble analysis and forecast. Using a multiplicative background covariance inflation does not produce enough spread in the analysis ensemble leading to a degradation of the ensemble forecasts. Inflating the analysis ensemble instead by either multiplicative analysis covariance inflation or relaxation inflation methods enhances the analysis spread and is able to provide initial conditions that produce more consistent ensemble forecasts. The forecast quality for short forecast lead times up to 3 h is improved, and 21-h forecasts also benefit from the increased spread. Doubling the ensemble size has not only a clear positive impact on the analysis but also on the short-term ensemble forecasts, while a simple representation of model error perturbing parameters of the model physics has only a small impact. Precipitation and surface wind speed ensemble forecasts using the high-resolution KENDA-derived initial conditions are competitive compared to the operationally used downscaled initial conditions.


2015 ◽  
Vol 143 (10) ◽  
pp. 3925-3930 ◽  
Author(s):  
Benjamin Ménétrier ◽  
Thomas Auligné

Abstract The control variable transform (CVT) is a keystone of variational data assimilation. In publications using such a technique, the background term of the transformed cost function is defined as a canonical inner product of the transformed control variable with itself. However, it is shown in this paper that this practical definition of the cost function is not correct if the CVT uses a square root of the background error covariance matrix that is not square. Fortunately, it is then shown that there is a manifold of the control space for which this flaw has no impact, and that most minimizers used in practice precisely work in this manifold. It is also shown that both correct and practical transformed cost functions have the same minimum. This explains more rigorously why the CVT is working in practice. The case of a singular is finally detailed, showing that the practical cost function still reaches the best linear unbiased estimate (BLUE).


2016 ◽  
Vol 144 (5) ◽  
pp. 1777-1803 ◽  
Author(s):  
Craig S. Schwartz

Analyses with 20-km horizontal grid spacing were produced from continuously cycling three-dimensional variational (3DVAR), ensemble square root Kalman filter (EnSRF), and “hybrid” variational–ensemble data assimilation (DA) systems over a domain spanning the conterminous United States. These analyses initialized 36-h Weather Research and Forecasting Model forecasts containing a large convection-allowing 4-km nested domain, where downscaled 20-km 3DVAR, EnSRF, and hybrid analyses initialized the 4-km forecasts. Overall, hybrid analyses initialized the best 4-km precipitation forecasts. Furthermore, whether 4-km precipitation forecasts could be improved by initializing them with true 4-km analyses was assessed. As it was computationally infeasible to produce 4-km continuously cycling ensembles over the large 4-km domain, several “dual-resolution” hybrid DA configurations were adopted where 4-km backgrounds were combined with 20-km ensembles to produce 4-km hybrid analyses. Additionally, 4-km 3DVAR analyses were produced. In both hybrid and 3DVAR frameworks, initializing 4-km forecasts with true 4-km analyses, rather than downscaled 20-km analyses, yielded superior precipitation forecasts over the first 12 h. Differences between forecasts initialized from 4-km and downscaled 20-km hybrid analyses were smaller for 18–36-h forecasts, but there were occasionally meaningful differences. Continuously cycling the 4-km backgrounds and using static background error covariances with larger horizontal length scales in the hybrid led to better forecasts. All hybrid-initialized forecasts, including those initialized from downscaled 20-km analyses, were more skillful than forecasts initialized from 4-km 3DVAR analyses, suggesting the analysis method was more important than analysis resolution.


2014 ◽  
Vol 53 (10) ◽  
pp. 2287-2309 ◽  
Author(s):  
Hongli Wang ◽  
Xiang-Yu Huang ◽  
Juanzhen Sun ◽  
Dongmei Xu ◽  
Man Zhang ◽  
...  

AbstractBackground error modeling plays a key role in a variational data assimilation system. The National Meteorological Center (NMC) method has been widely used in variational data assimilation systems to generate a forecast error ensemble from which the climatological background error covariance can be modeled. In this paper, the characteristics of the background error modeling via the NMC method are investigated for the variational data assimilation system of the Weather Research and Forecasting (WRF-Var) Model. The background error statistics are extracted from short-term 3-km-resolution forecasts in June, July, and August 2012 over a limited-area domain. It is found 1) that background error variances vary from month to month and also have a feature of diurnal variations in the low-level atmosphere and 2) that u- and υ-wind variances are underestimated and their autocorrelation length scales are overestimated when the default control variable option in WRF-Var is used. A new approach of control variable transform (CVT) is proposed to model the background error statistics based on the NMC method. The new approach is capable of extracting inhomogeneous and anisotropic climatological information from the forecast error ensemble obtained via the NMC method. Single observation assimilation experiments show that the proposed method not only has the merit of incorporating geographically dependent covariance information, but also is able to produce a multivariate analysis. The results from the data assimilaton and forecast study of a real convective case show that the use of the new CVT improves synoptic weather system and precipitation forecasts for up to 12 h.


Sign in / Sign up

Export Citation Format

Share Document