scholarly journals Testing the detectability of spatio–temporal climate transitions from paleoclimate networks with the START model

2014 ◽  
Vol 21 (3) ◽  
pp. 691-703 ◽  
Author(s):  
K. Rehfeld ◽  
N. Molkenthin ◽  
J. Kurths

Abstract. A critical challenge in paleoclimate data analysis is the fact that the proxy data are heterogeneously distributed in space, which affects statistical methods that rely on spatial embedding of data. In the paleoclimate network approach nodes represent paleoclimate proxy time series, and links in the network are given by statistically significant similarities between them. Their location in space, proxy and archive type is coded in the node attributes. We develop a semi-empirical model for Spatio-Temporally AutocoRrelated Time series, inspired by the interplay of different Asian Summer Monsoon (ASM) systems. We use an ensemble of transition runs of this START model to test whether and how spatio–temporal climate transitions could be detectable from (paleo)climate networks. We sample model time series both on a grid and at locations at which paleoclimate data are available to investigate the effect of the spatially heterogeneous availability of data. Node betweenness centrality, averaged over the transition region, does not respond to the transition displayed by the START model, neither in the grid-based nor in the scattered sampling arrangement. The regionally defined measures of regional node degree and cross link ratio, however, are indicative of the changes in both scenarios, although the magnitude of the changes differs according to the sampling. We find that the START model is particularly suitable for pseudo-proxy experiments to test the technical reconstruction limits of paleoclimate data based on their location, and we conclude that (paleo)climate networks are suitable for investigating spatio–temporal transitions in the dependence structure of underlying climatic fields.

Author(s):  
Carlos A. Severiano ◽  
Petrônio de Cândido de Lima e Silva ◽  
Miri Weiss Cohen ◽  
Frederico Gadelha Guimarães

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masayuki Kano ◽  
Shin’ichi Miyazaki ◽  
Yoichi Ishikawa ◽  
Kazuro Hirahara

Abstract Postseismic Global Navigation Satellite System (GNSS) time series followed by megathrust earthquakes can be interpreted as a result of afterslip on the plate interface, especially in its early phase. Afterslip is a stress release process accumulated by adjacent coseismic slip and can be considered a recovery process for future events during earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress perturbation. Therefore, it is important to quantitatively capture the spatio-temporal evolution of afterslip and related postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developed an adjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to optimize the frictional parameters that control the slip behavior on the fault. The developed method was validated with synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip could roughly (but not in detail) be reproduced if the observation noise was included. The optimization of frictional parameters reproduced not only the postseismic displacements used for the assimilation, but also improved the prediction skill of the following time series. Then, we applied the developed method to the observed GNSS time series for the first 15 days following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized to A–B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). A large afterslip is inferred on the shallower side of the coseismic slip area. The optimized frictional parameters quantitatively predicted the postseismic GNSS time series for the following 15 days. These characteristics can also be detected if the simulation variables can be simultaneously optimized. The developed data assimilation method, which can be directly applied to GNSS time series following megathrust earthquakes, is an effective quantitative evaluation method for assessing risks of subsequent earthquakes and for monitoring the recovery process of megathrust earthquakes.


2021 ◽  
Vol 259 ◽  
pp. 112394
Author(s):  
Huijin Yang ◽  
Bin Pan ◽  
Ning Li ◽  
Wei Wang ◽  
Jian Zhang ◽  
...  

2017 ◽  
Vol 195 ◽  
pp. 118-129 ◽  
Author(s):  
Anne Schneibel ◽  
Marion Stellmes ◽  
Achim Röder ◽  
David Frantz ◽  
Benjamin Kowalski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document