climate networks
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 25)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Leonardo N. Ferreira ◽  
Nicole C. R. Ferreira ◽  
Elbert E. N. Macau ◽  
Reik V. Donner

2021 ◽  
pp. 1-39
Author(s):  
Jun Meng ◽  
Josef Ludescher ◽  
Zhaoyuan Li ◽  
Elena Surovyatkina ◽  
Xiaosong Chen ◽  
...  

Abstract Despite the development of sophisticated statistical and dynamical climate models, a relative long-term and reliable prediction of the Indian summer monsoon rainfall (ISMR) has remained a challenging problem. Towards achieving this goal, here we construct a series of dynamical and physical climate networks based on the global near surface air temperature field. We uncover that some characteristics of the directed and weighted climate networks can serve as efficient long-term predictors for ISMR forecasting. The developed prediction method produces a forecasting skill of 0.54 (Pearson correlation) with a 5-month lead-time by using the previous calendar year’s data. The skill of our ISMR forecast is better than that of operational forecasts models, which have, however, quite a short lead-time. We discuss the underlying mechanism of our predictor and associate it with network-ENSO and ENSO-monsoon connections. Moreover, our approach allows predicting the all India rainfall, as well as the different Indian homogeneous regions’ rainfall, which is crucial for agriculture in India. We reveal that global warming affects the climate network by enhancing cross-equatorial teleconnections between the Southwest Atlantic, the Western part of the Indian Ocean, and the North Asia-Pacific region, with significant impacts on the precipitation in India. A stronger connection through the chain of the main atmospheric circulations patterns benefits the prediction of the amount of rainfall. We uncover a hotspot area in the mid-latitude South Atlantic, which is the basis for our predictor, the South-West Atlantic Subtropical Index (SWAS-index). Remarkably, the significant warming trend in this area yields an improvement of the prediction skill.


2021 ◽  
Author(s):  
Abinesh Ganapathy ◽  
Ravi Guntu ◽  
Ugur Öztürk ◽  
Bruno Merz ◽  
Ankit Agarwal
Keyword(s):  

Author(s):  
Leonardo N. Ferreira ◽  
Nicole C. R. Ferreira ◽  
Elbert E. N. Macau ◽  
Reik V. Donner

Author(s):  
Serhiy Yanchuk ◽  
Antonio C. Roque ◽  
Elbert E. N. Macau ◽  
Jürgen Kurths

AbstractThis special issue presents a series of 33 contributions in the area of dynamical networks and their applications. Part of the contributions is devoted to theoretical and methodological aspects of dynamical networks, such as collective dynamics of excitable systems, spreading processes, coarsening, synchronization, delayed interactions, and others. A particular focus is placed on applications to neuroscience and Earth science, especially functional climate networks. Among the highlights, various methods for dealing with noise and stochastic processes in neuroscience are presented. A method for constructing weighted networks with arbitrary topologies from a single dynamical node with delayed feedback is introduced. Also, a generalization of the concept of geodesic distances, a path-integral formulation of network-based measures is developed, which provides fundamental insights into the dynamics of disease transmission. The contributions from the Earth science application field substantiate predictive power of climate networks to study challenging Earth processes and phenomena.


2021 ◽  
Author(s):  
Shraddha Gupta ◽  
Niklas Boers ◽  
Florian Pappenberger ◽  
Jürgen Kurths

AbstractTropical cyclones (TCs) are one of the most destructive natural hazards that pose a serious threat to society, particularly to those in the coastal regions. In this work, we study the temporal evolution of the regional weather conditions in relation to the occurrence of TCs using climate networks. Climate networks encode the interactions among climate variables at different locations on the Earth’s surface, and in particular, time-evolving climate networks have been successfully applied to study different climate phenomena at comparably long time scales, such as the El Niño Southern Oscillation, different monsoon systems, or the climatic impacts of volcanic eruptions. Here, we develop and apply a complex network approach suitable for the investigation of the relatively short-lived TCs. We show that our proposed methodology has the potential to identify TCs and their tracks from mean sea level pressure (MSLP) data. We use the ERA5 reanalysis MSLP data to construct successive networks of overlapping, short-length time windows for the regions under consideration, where we focus on the north Indian Ocean and the tropical north Atlantic Ocean. We compare the spatial features of various topological properties of the network, and the spatial scales involved, in the absence and presence of a cyclone. We find that network measures such as degree and clustering exhibit significant signatures of TCs and have striking similarities with their tracks. The study of the network topology over time scales relevant to TCs allows us to obtain crucial insights into the effects of TCs on the spatial connectivity structure of sea-level pressure fields.


Urban Climate ◽  
2021 ◽  
Vol 38 ◽  
pp. 100909
Author(s):  
Zhi-Hua Wang ◽  
Chenghao Wang ◽  
Xueli Yang

Author(s):  
Frederik Wolf ◽  
Reik V. Donner

AbstractIn the past years, there has been an increasing number of applications of functional climate networks to studying the spatio-temporal organization of heavy rainfall events or similar types of extreme behavior in some climate variable of interest. Nearly all existing studies have employed the concept of event synchronization (ES) to statistically measure similarity in the timing of events at different grid points. Recently, it has been pointed out that this measure can however lead to biases in the presence of events that are heavily clustered in time. Here, we present an analysis of the effects of event declustering on the resulting functional climate network properties describing spatio-temporal patterns of heavy rainfall events during the South American monsoon season based on ES and a conceptually similar method, event coincidence analysis (ECA). As examples for widely employed local (per-node) network characteristics of different type, we study the degree, local clustering coefficient and average link distance patterns, as well as their mutual interdependency, for three different values of the link density. Our results demonstrate that the link density can markedly affect the resulting spatial patterns. Specifically, we find the qualitative inversion of the degree pattern with rising link density in one of the studied settings. To our best knowledge, such crossover behavior has not been described before in event synchrony based networks. In addition, declustering relieves differences between ES and ECA based network properties in some measures while not in others. This underlines the need for a careful choice of the methodological settings in functional climate network studies of extreme events and associated interpretation of the obtained results, especially when higher-order network properties are considered.


2021 ◽  
Vol 28 (2) ◽  
pp. 231-245
Author(s):  
Gerd Schädler ◽  
Marcus Breil

Abstract. Regional climate networks (RCNs) are used to identify heatwaves and droughts in Germany and two subregions for the summer half-years and summer seasons of the period 1951 to 2019. RCNs provide information for whole areas (in contrast to the point-wise information from standard indices), the underlying nodes can be distributed arbitrarily, they are easy to construct, and they provide details otherwise difficult to access, like temporal and spatial extent and localisation of extreme events; this makes them suitable for the statistical analysis of climate model output. The RCNs were constructed on the regular 0.25∘ grid of the E-OBS data set. The season-wise correlation of the time series of daily maximum temperature Tmax and precipitation were used to construct the adjacency matrix of the networks. Based on the results of a sensitivity study, we used the edge density, which increases significantly during extreme events, as the main metrics to characterise the network structure. The standard indices for comparison were the Effective Drought Index and Effective Heat Index (EDI and EHI), respectively, based on the same time series and complemented by other published data. Our results show that the RCNs are generally able to identify severe and moderate extremes and can differentiate between regions and seasons.


2021 ◽  
Author(s):  
Shraddha Gupta ◽  
Niklas Boers ◽  
Florian Pappenberger ◽  
Jürgen Kurths

Abstract Tropical cyclones (TCs) are one of the most destructive natural hazards that pose a serious threat to society around the globe, particularly to those in the coastal regions. In this work, we study the temporal evolution of the regional weather conditions in relation to the occurrence of TCs using climate networks. Climate networks encode the interactions among climate variables at different locations on the Earth's surface, and in particular, time-evolving climate networks have been successfully applied to study different climate phenomena at comparably long time scales, such as the El Ni~no Southern Oscillation, different monsoon systems, or the climatic impacts of volcanic eruptions. Here, we develop and apply a complex network approach suitable for the investigation of the relatively short-lived TCs. We show that our proposed methodology has the potential to identify TCs and their tracks from mean sea level pressure (MSLP) data. We use the ERA5 reanalysis MSLP data to construct successive networks 20 of overlapping, short-length time windows for the regions under consideration, where we focus on the north Indian Ocean and the tropical north Atlantic Ocean. We compare the spatial features of various topological properties of the network, and the spatial scales involved, in the absence and presence of a cyclone. We find that network measures such as degree and clustering exhibit significant signatures of TCs and have striking similarities with their tracks. The study of network topology over time scales relevant to TCs allows us to obtain useful insights into the individual local signature of changes in the flow structure of the regional climate system.


Sign in / Sign up

Export Citation Format

Share Document