land use regression
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 143)

H-INDEX

56
(FIVE YEARS 9)

Author(s):  
Yuan Shi ◽  
Alexis Kai-Hon Lau ◽  
Edward Ng ◽  
Hung-Chak Ho ◽  
Muhammad Bilal

Poor air quality has been a major urban environmental issue in large high-density cities all over the world, and particularly in Asia, where the multiscale complex of pollution dispersal creates a high-level spatial variability of exposure level. Investigating such multiscale complexity and fine-scale spatial variability is challenging. In this study, we aim to tackle the challenge by focusing on PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm,) which is one of the most concerning air pollutants. We use the widely adopted land use regression (LUR) modeling technique as the fundamental method to integrate air quality data, satellite data, meteorological data, and spatial data from multiple sources. Unlike most LUR and Aerosol Optical Depth (AOD)-PM2.5 studies, the modeling process was conducted independently at city and neighborhood scales. Correspondingly, predictor variables at the two scales were treated separately. At the city scale, the model developed in the present study obtains better prediction performance in the AOD-PM2.5 relationship when compared with previous studies (R2¯ from 0.72 to 0.80). At the neighborhood scale, point-based building morphological indices and road network centrality metrics were found to be fit-for-purpose indicators of PM2.5 spatial estimation. The resultant PM2.5 map was produced by combining the models from the two scales, which offers a geospatial estimation of small-scale intraurban variability.


Author(s):  
Igor Popovic ◽  
Ricardo J. Soares Magalhães ◽  
Shukun Yang ◽  
Yurong Yang ◽  
Erjia Ge ◽  
...  

Existing national- or continental-scale models of nitrogen dioxide (NO2) exposure have a limited capacity to capture subnational spatial variability in sparsely-populated parts of the world where NO2 sources may vary. To test and validate our approach, we developed a land-use regression (LUR) model for NO2 for Ningxia Hui Autonomous Region (NHAR) and surrounding areas, a small rural province in north-western China. Using hourly NO2 measurements from 105 continuous monitoring sites in 2019, a supervised, forward addition, linear regression approach was adopted to develop the model, assessing 270 potential predictor variables, including tropospheric NO2, optically measured by the Aura satellite. The final model was cross-validated (5-fold cross validation), and its historical performance (back to 2014) assessed using 41 independent monitoring sites not used for model development. The final model captured 63% of annual NO2 in NHAR (RMSE: 6 ppb (21% of the mean of all monitoring sites)) and contiguous parts of Inner Mongolia, Gansu, and Shaanxi Provinces. Cross-validation and independent evaluation against historical data yielded adjusted R2 values that were 1% and 10% lower than the model development values, respectively, with comparable RMSE. The findings suggest that a parsimonious, satellite-based LUR model is robust and can be used to capture spatial contrasts in annual NO2 in the relatively sparsely-populated areas in NHAR and neighbouring provinces.


2021 ◽  
Vol 12 (10) ◽  
pp. 101186
Author(s):  
Licheng Zhang ◽  
Xue Tian ◽  
Yuhan Zhao ◽  
Lulu Liu ◽  
Zhiwei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document