scholarly journals Simulations of nonlinear harmonic generation by an internal wave beam incident on a pycnocline

2014 ◽  
Vol 21 (4) ◽  
pp. 855-868 ◽  
Author(s):  
S. Wunsch ◽  
H. Ku ◽  
I. Delwiche ◽  
R. Awadallah

Abstract. Internal wave beams generated by oceanic tidal flows propagate upward and interact with the increasing stratification found at the pycnocline. The nonlinear generation of harmonic modes by internal wave beams incident on a pycnocline has recently been demonstrated by laboratory experiments and numerical simulations. In these previous studies, the harmonic modes were trapped within the pycnocline because their frequencies exceeded that of the stratified fluid below. Here, two-dimensional numerical simulations are used to explore the effect of incidence angle on harmonic generation at a thin pycnocline. At incidence angles less than 30 degrees (typical of oceanic beams), the lowest harmonic mode freely radiates in the form of an internal wave beam rather than being trapped within the pycnocline. The results indicate that nonlinear refraction is the primary mechanism for harmonic generation at incidence angles exceeding 30 degrees, but that interaction of the incident and reflected beams is more important at smaller incidence angles. The simulations are compared to weakly nonlinear theory based on refraction at the pycnocline. The results yield good agreement for trapped harmonics, but weakly nonlinear theory substantially underpredicts the amplitude of the radiated harmonics.

1999 ◽  
Vol 104 (C4) ◽  
pp. 7641-7647 ◽  
Author(s):  
Tanos Elfouhaily ◽  
Donald Thompson ◽  
Douglas Vandemark ◽  
Bertrand Chapron

2021 ◽  
Vol 118 (14) ◽  
pp. e2019348118
Author(s):  
Guillaume Vanderhaegen ◽  
Corentin Naveau ◽  
Pascal Szriftgiser ◽  
Alexandre Kudlinski ◽  
Matteo Conforti ◽  
...  

The classical theory of modulation instability (MI) attributed to Bespalov–Talanov in optics and Benjamin–Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear theory of MI can be applied is actually much larger than considered here.


1999 ◽  
Vol 59 (2) ◽  
pp. 1747-1769 ◽  
Author(s):  
Emmanuel Plaut ◽  
Werner Pesch

Sign in / Sign up

Export Citation Format

Share Document