Three-Dimensional Effects in Boundary-Layer Transition: A High Reynolds Number Weakly-Nonlinear Theory

1990 ◽  
pp. 143-148
Author(s):  
P. A. Stewart
Author(s):  
Curt H. Liebert ◽  
Raymond E. Gaugler ◽  
Herbert J. Gladden

Convection cooled turbine vane metal wall temperatures experimentally obtained in a hot cascade for a given one-vane design were compared with wall temperatures calculated with TACT1 and STAN5 computer codes which incorporated various models for predicting laminar-to-turbulent boundary layer transition. Favorable comparisons on both vane surfaces were obtained at high Reynolds number with only one of these transition models. When other models were used, temperature differences between calculated and experimental data obtained at the high Reynolds number were as much as 14 percent in the separation bubble region of the pressure surface. On the suction surface and at lower Reynolds number, predictions and data unsatisfactorily differed by as much as 22 percent. Temperature differences of this magnitude can represent orders of magnitude error in blade life prediction.


2019 ◽  
Vol 51 (1) ◽  
pp. 451-485 ◽  
Author(s):  
Xuesong Wu

This article reviews the nonlinear stability theories that have been developed to explain laminar–turbulent transition processes in boundary and free shear layers. For such spatially developing shear flows, a high–Reynolds number approach is necessary to account for, in a systematic and self-consistent manner, multiple competing physical factors, such as nonlinearity, nonparallelism, nonequilibrium, and viscosity. While the basic ideas and fundamental mechanisms are rooted in the classical weakly nonlinear theory, which was formulated primarily for exactly parallel flows and on the basis of finite Reynolds number, the high–Reynolds number formulations lead to low-dimensional evolution systems, which differ significantly from the finite–Reynolds number counterparts and better describe the observations. Owing to efforts in the past 30 years or so, nonlinear evolution systems have been derived for inviscid Rayleigh modes, viscous Tollmien–Schlichting waves, (first and second) Mack modes, and cross-flow vortices. Theories have also been developed for nonlinear intermodal interactions, including oblique mode interaction, subharmonic resonance, phase-locked interactions, and fundamental resonance; these underpin many intriguing behaviors in the three-dimensional stages of transition. These theories and results explain several key nonlinear features observed and should play a useful role in guiding future experimental and numerical investigations.


1986 ◽  
Vol 163 ◽  
pp. 257-282 ◽  
Author(s):  
Philip Hall ◽  
Mujeeb R. Malik

The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier–Stokes equations for the attachment-line flow have been solved using a Fourier–Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.


Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Küsters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4%. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40% of chord. For high turbulence levels (Tu > 3%) and high Reynolds numbers transition propagates upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably and at Tu = 4% bypass transition is observed near 7–10% of chord. Experimental results are compared to theoretical predictions using the transition model which is implemented in the MISES code of Youngren and Drela. Overall the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


2014 ◽  
Vol 543-547 ◽  
pp. 434-440
Author(s):  
Qiang Liu ◽  
Wei Xie ◽  
Wen Yang Duan ◽  
Chang Hong Hu

Based on fully structured grids parallel numerical simulations of flow around a cylinder under different Reynolds number are carried out. Two-dimensional and three-dimensional models are established at the same time under specific Reynolds number, and further analyze of three-dimensional flow characteristics as well as the generated influence to overall physical quantities are presented. In order to explore efficient high Reynolds number turbulence models, a comparative research of the LES model without wall functions and the Spalart-Allmaras turbulence model is carried out. In order to improve the computational efficiency, a domain decomposition parallel computing strategy is used, and a calculation strategy that results of coarse grid was assigned to fine grid as initial field value by 3D linear interpolation is presented. Simulation results show that: Drag coefficient and Strouhal number have very good consistency with the experimental data, which verifies the correctness of the calculation method; Even if at low Reynolds number (200≤Re≤300), using a three-dimensional model is still necessary; While in the high Reynolds number stage, compared to LES model without wall functions, Spalart-Allmaras model is more applicable and more efficient.


Sign in / Sign up

Export Citation Format

Share Document