scholarly journals Supplementary material to "A framework to evaluate and elucidate the driving mechanisms of coastal sea surface pCO<sub>2</sub> seasonality using an ocean general circulation model (MOM6-COBALT)"

Author(s):  
Alizée Roobaert ◽  
Laure Resplandy ◽  
Goulven Gildas Laruelle ◽  
Enhui Liao ◽  
Pierre Regnier
2005 ◽  
Vol 133 (10) ◽  
pp. 2972-2995 ◽  
Author(s):  
David G. DeWitt

Abstract A large number of ensemble hindcasts (or retrospective forecasts) of tropical Pacific sea surface temperature (SST) have been made with a coupled atmosphere–ocean general circulation model (CGCM) that does not employ flux correction in order to evaluate the potential skill of the model as a seasonal forecasting tool. Oceanic initial conditions are provided by an ocean data assimilation system. Ensembles of seven forecasts of 6-month length are made starting each month in the 1982 to 2002 period. Skill of the coupled model is evaluated from both a deterministic and a probabilistic perspective. The skill metrics are calculated using both the bulk method, which includes all initial condition months together, and as a function of initial condition month. The latter method allows a more objective evaluation of how the model has performed in the context in which forecasts are actually made and applied. The deterministic metrics used are the anomaly correlation and the root-mean-square error. The coupled model deterministic skill metrics are compared with those from persistence and damped persistence reference forecasts. Despite the fact that the coupled model has a large cold bias in the central and eastern equatorial Pacific this coupled model is shown to have forecast skill that is competitive with other state-of-the-art forecasting techniques. Potential skill from probabilistic forecasts made using the coupled model ensemble members are evaluated using the relative operating characteristics method. This analysis indicates that for most initial condition months this coupled model has more skill at forecasting cold events than warm or neutral events in the central Pacific. In common with other forecasting systems, the coupled model forecast skill is found to be lowest for forecasts passing through the Northern Hemisphere (NH) spring. Diagnostics of this so-called spring predictability barrier in the context of this coupled model indicate that two factors likely contribute to this predictability barrier. First, the coupled model shows a too-weak coupling of the surface and subsurface temperature anomalies during NH spring. Second, the coupled-model-simulated signal-to-noise ratio for SST anomalies is much lower during NH spring than at other times of the year, indicating that the model’s potential predictability is low at this time.


2009 ◽  
Vol 39 (3) ◽  
pp. 753-767 ◽  
Author(s):  
Max Yaremchuk ◽  
Julian McCreary ◽  
Zuojun Yu ◽  
Ryo Furue

Abstract The salinity distribution in the South China Sea (SCS) has a pronounced subsurface maximum from 150–220 m throughout the year. This feature can only be maintained by the existence of a mean flow through the SCS, consisting of a net inflow of salty North Pacific tropical water through the Luzon Strait and outflow through the Mindoro, Karimata, and Taiwan Straits. Using an inverse modeling approach, the authors show that the magnitude and space–time variations of the SCS thermohaline structure, particularly for the salinity maximum, allow a quantitative estimate of the SCS throughflow and its distribution among the three outflow straits. Results from the inversion are compared with available observations and output from a 50-yr simulation of a highly resolved ocean general circulation model. The annual-mean Luzon Strait transport is found to be 2.4 ± 0.6 Sv (Sv ≡ 106 m3 s−1). This inflow is balanced by the outflows from the Karimata (0.3 ± 0.5 Sv), Mindoro (1.5 ± 0.4), and Taiwan (0.6 ± 0.5 Sv) Straits. Results of the inversion suggest that the Karimata transport tends to be overestimated in numerical models. The Mindoro Strait provides the only passage from the SCS deeper than 100 m, and half of the SCS throughflow (1.2 ± 0.3 Sv) exits the basin below 100 m in the Mindoro Strait, a result that is consistent with a climatological run of a 0.1° global ocean general circulation model.


2008 ◽  
Vol 274 (3-4) ◽  
pp. 448-461 ◽  
Author(s):  
Mark Siddall ◽  
Samar Khatiwala ◽  
Tina van de Flierdt ◽  
Kevin Jones ◽  
Steven L. Goldstein ◽  
...  

Oceanography ◽  
2012 ◽  
Vol 25 (2) ◽  
pp. 20-29 ◽  
Author(s):  
Brian Arbic ◽  
James Richman ◽  
Jay Shriver ◽  
Patrick Timko ◽  
Joseph Metzger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document