scholarly journals Sea level variability in the Arctic Ocean observed by satellite altimetry

2012 ◽  
Vol 9 (4) ◽  
pp. 2375-2401 ◽  
Author(s):  
P. Prandi ◽  
M. Ablain ◽  
A. Cazenave ◽  
N. Picot

Abstract. We investigate sea level variability in the Arctic Ocean from observations. Variability estimates are derived both at the basin scale and on smaller local spatial scales. The periods of the signals studied vary from high frequency (intra-annual) to long term trends. We also investigate the mechanisms responsible for the observed variability. Different data types are used, the main one being a recent reprocessing of satellite altimetry data in the Arctic Ocean. Satellite altimetry data is compared to tide gauges measurements, steric sea level derived from temperature and salinity fields and GRACE ocean mass estimates. We establish a consistent regional sea level budget over the GRACE availability era (2003–2009) showing that the sea level drop observed by altimetry over this period is driven by ocean mass loss rather than steric effects. The comparison of altimetry and tide gauges time series show that the two techniques are in good agreement regarding sea level trends. Coastal areas of high variability in the altimetry record are also consistent with tide gauges records. An EOF analysis of September mean altimetry fields allows identifying two regions of wind driven variability in the Arctic Ocean: the Beaufort Gyre region and the coastal European and Russian Arctic. Such patterns are related to atmospheric regimes through the Arctic Oscillation and Dipole Anomaly.

MAUSAM ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 187-198
Author(s):  
HADDAD MAHDI ◽  
TAIBI HEBIB ◽  
MOKRANE MOUSTAFA ◽  
HAMMOUMI HOUSSEYN

By considering time series from satellite altimetry and tide gauges that extend back to 1993, Singular Spectrum Analysis (SSA) is applied to investigate and compare the non linear trends of the sea level along the Mediterranean coasts. The major issue of this comparison is to show if the satellite altimetry data could be representative of the local sea level as observed by tide gauges.   The results indicate that the local trends estimated from an in-situ tide gauge and satellite altimetry data show nearly identical positive rates over the period from 1993 to 2017. The differences between the estimated rates of sea level change from in-situ tide gauge and satellite measurements vary, in absolute value, from 0.18 to 4.29 mm/year with an average of 1.55 mm/year.   This result is sufficient to admit, if necessary, on the one hand, the complementarily of the two measurement techniques (satellite altimetry and tide gauges) and, on the other hand, the rise in sea level near the Mediterranean coastal areas.


2012 ◽  
Vol 35 (sup1) ◽  
pp. 61-81 ◽  
Author(s):  
P. Prandi ◽  
M. Ablain ◽  
A. Cazenave ◽  
N. Picot

Author(s):  
A. Proshutinsky ◽  
I. Ashik ◽  
S. Häkkinen ◽  
E. Hunke ◽  
R. Krishfield ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
H. Bâki Iz

AbstractThe residuals of 27 globally distributed long tide gauge recordswere scrutinized after removing the globally compounding effect of the periodic lunar node tides and almost periodic solar radiation’s sub and superharmonics from the tide gauge data. The spectral analysis of the residuals revealed additional unmodeled periodicities at decadal scales, 19 of which are within the close range of 12–14 years, at 27 tide gauge stations. The amplitudes of the periodicitieswere subsequently estimated for the spectrally detected periods and they were found to be statistically significant (p «0.05) for 18 out of 27 globally distributed tide gauge stations. It was shown that the estimated amplitudes at different localities may have biased the outcome of all the previous studies based on tide gauge or satellite altimetry data that did not account for these periodicities, within the range −0.5 – 0.5 mm/yr., acting as another confounder in detecting 21st century sea level rise.


Author(s):  
Maulik Jain ◽  
Cristina Martin-Puig ◽  
Ole Baltazar Andersen ◽  
Lars Stenseng ◽  
Jorgen Dall

Sign in / Sign up

Export Citation Format

Share Document