scholarly journals Study on Sea Level Changes in Korean Peninsula by Using Satellite Altimetry Data

Author(s):  
Do-Hyun Hwang ◽  
Hong-Joo Yoon ◽  
Won-Chan Seo
2015 ◽  
Vol 5 (1) ◽  
Author(s):  
H. Bâki Iz

AbstractThe residuals of 27 globally distributed long tide gauge recordswere scrutinized after removing the globally compounding effect of the periodic lunar node tides and almost periodic solar radiation’s sub and superharmonics from the tide gauge data. The spectral analysis of the residuals revealed additional unmodeled periodicities at decadal scales, 19 of which are within the close range of 12–14 years, at 27 tide gauge stations. The amplitudes of the periodicitieswere subsequently estimated for the spectrally detected periods and they were found to be statistically significant (p «0.05) for 18 out of 27 globally distributed tide gauge stations. It was shown that the estimated amplitudes at different localities may have biased the outcome of all the previous studies based on tide gauge or satellite altimetry data that did not account for these periodicities, within the range −0.5 – 0.5 mm/yr., acting as another confounder in detecting 21st century sea level rise.


MAUSAM ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 187-198
Author(s):  
HADDAD MAHDI ◽  
TAIBI HEBIB ◽  
MOKRANE MOUSTAFA ◽  
HAMMOUMI HOUSSEYN

By considering time series from satellite altimetry and tide gauges that extend back to 1993, Singular Spectrum Analysis (SSA) is applied to investigate and compare the non linear trends of the sea level along the Mediterranean coasts. The major issue of this comparison is to show if the satellite altimetry data could be representative of the local sea level as observed by tide gauges.   The results indicate that the local trends estimated from an in-situ tide gauge and satellite altimetry data show nearly identical positive rates over the period from 1993 to 2017. The differences between the estimated rates of sea level change from in-situ tide gauge and satellite measurements vary, in absolute value, from 0.18 to 4.29 mm/year with an average of 1.55 mm/year.   This result is sufficient to admit, if necessary, on the one hand, the complementarily of the two measurement techniques (satellite altimetry and tide gauges) and, on the other hand, the rise in sea level near the Mediterranean coastal areas.


2018 ◽  
Vol 50 (2) ◽  
pp. 162
Author(s):  
Isna Uswatun Khasanah

The information of sea level rise was needed in the Indonesia as archipelago country to management risk and development coastal area. This research study took in West Sumatra waters, because the majority people have lived in coastal area and some areas is located below 100 m above Mean Sea Level (MSL). The sea level data was taken from multi-satellite altimetry, they are Topex/Poseidon, Jason-1, and Jason-2. The period of data started from 1993 until 2015.Preliminary data processing of satellite altimetry was done by global test and post-processing of satellite altimetry data. The sea level rise analysis done by linear regression methods. Linear regression formula of sea level rise in West Sumatra Waters during the period was  y = 1.586 + 0.0000113x. The change of sea level during period 1993 until 2015 was 3.394 cm with mean sea level rise value was 1.35 mm/year


Sign in / Sign up

Export Citation Format

Share Document