scholarly journals Sea level variability in the Arctic Ocean from AOMIP models

Author(s):  
A. Proshutinsky ◽  
I. Ashik ◽  
S. Häkkinen ◽  
E. Hunke ◽  
R. Krishfield ◽  
...  
2012 ◽  
Vol 9 (4) ◽  
pp. 2375-2401 ◽  
Author(s):  
P. Prandi ◽  
M. Ablain ◽  
A. Cazenave ◽  
N. Picot

Abstract. We investigate sea level variability in the Arctic Ocean from observations. Variability estimates are derived both at the basin scale and on smaller local spatial scales. The periods of the signals studied vary from high frequency (intra-annual) to long term trends. We also investigate the mechanisms responsible for the observed variability. Different data types are used, the main one being a recent reprocessing of satellite altimetry data in the Arctic Ocean. Satellite altimetry data is compared to tide gauges measurements, steric sea level derived from temperature and salinity fields and GRACE ocean mass estimates. We establish a consistent regional sea level budget over the GRACE availability era (2003–2009) showing that the sea level drop observed by altimetry over this period is driven by ocean mass loss rather than steric effects. The comparison of altimetry and tide gauges time series show that the two techniques are in good agreement regarding sea level trends. Coastal areas of high variability in the altimetry record are also consistent with tide gauges records. An EOF analysis of September mean altimetry fields allows identifying two regions of wind driven variability in the Arctic Ocean: the Beaufort Gyre region and the coastal European and Russian Arctic. Such patterns are related to atmospheric regimes through the Arctic Oscillation and Dipole Anomaly.


2012 ◽  
Vol 35 (sup1) ◽  
pp. 61-81 ◽  
Author(s):  
P. Prandi ◽  
M. Ablain ◽  
A. Cazenave ◽  
N. Picot

Author(s):  
A. Proshutinsky ◽  
I. M. Ashik ◽  
E. N. Dvorkin ◽  
S. Häkkinen ◽  
R. A. Krishfield ◽  
...  

2021 ◽  
Author(s):  
Guokun Lyu ◽  
Nuno Serra ◽  
Meng Zhou ◽  
Detlef Stammer

Abstract. Two high-resolution model simulations are used to investigate the spatio-temporal variability of the Arctic Ocean sea level. The model simulations reveal barotropic sea level variability at periods < 30 days, which is strongly captured by bottom pressure observations. The seasonal sea level variability is driven by volume ex-changes with the Pacific and Atlantic Oceans and the redistribution of the water by the wind. Halosteric effects due to river runoff and evaporation minus precipitation (EmPmR), ice melting/formation also contribute in the marginal seas and seasonal sea ice extent regions. In the central Arctic Ocean, especially the Canadian Basin, the decadal halosteric effect dominates sea level variability. Satellite altimetric observations and Gravity Re-covery and Climate Experiment (GRACE) measurements could be used to infer freshwater content changes in the Canadian Basin at periods longer than one year. The increasing number of profiles seems to capture fresh-water content changes since 2007, encouraging further data synthesis work with a more complicated interpola-tion method. Further, in-situ hydrographic observations should be enhanced to reveal the freshwater budget and close the gaps between satellite altimetry and GRACE, especially in the marginal seas.


Sign in / Sign up

Export Citation Format

Share Document