scholarly journals Bromine speciation and partitioning in slab-derived aqueous fluids and silicate melts and implications for halogen transfer in subduction zones

Solid Earth ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 1145-1161
Author(s):  
Marion Louvel ◽  
Carmen Sanchez-Valle ◽  
Wim J. Malfait ◽  
Gleb S. Pokrovski ◽  
Camelia N. Borca ◽  
...  

Abstract. Understanding the behavior of halogens (Cl, Br, and I) in subduction zones is critical to constrain the geochemical cycle of these volatiles and associated trace metals, as well as to quantify the halogen fluxes to the atmosphere via volcanic degassing. Here, the partitioning of bromine between coexisting aqueous fluids and hydrous granitic melts and its speciation in slab-derived fluids have been investigated in situ up to 840 ∘C and 2.2 GPa by synchrotron x-ray fluorescence (SXRF) and x-ray absorption spectroscopy (XAS) in diamond anvil cells. The partition coefficients DBrf/m range from ∼2 to ∼15, with an average value of 6.7±3.6 (1σ) over the whole pressure–temperature (P–T) range, indicating a moderate Br enrichment in aqueous fluids, in agreement with previous work. Extended x-ray-absorption fine-structure (EXAFS) analysis further evidences a gradual evolution of Br speciation from hydrated Br ions [Br(H2O)6]− in slab dehydration fluids to more complex structures involving both Na ions and water molecules, [BrNax(H2O)y], in hydrous silicate melts and supercritical fluids released at greater depth (> 200 km). In denser fluids (ρ > 1.5 g cm−3) containing 60 wt % dissolved alkali–silicates and in hydrous Na2Si2O5 melts (10 wt % H2O), Br is found to be in a “salt-like” structure involving the six nearest Na ions and several next-nearest O neighbors that are either from water molecules and/or the silicate network. Bromine (and likely chlorine and iodine) complexing with alkalis is thus an efficient mechanism for the mobilization and transport of halogens by hydrous silicate melts and silica-rich supercritical fluids. Our results suggest that both shallow dehydration fluids and deeper silicate-bearing fluids efficiently remove halogens from the slab in the sub-arc region, thus favoring an efficient transfer of halogens across subduction zones.

2020 ◽  
Author(s):  
Marion Louvel ◽  
Carmen Sanchez-Valle ◽  
Wim J. Malfait ◽  
Gleb S. Pokrovski ◽  
Camelia N. Borca ◽  
...  

Abstract. Understanding the behavior of halogens (Cl, Br, and I) in subduction zones is critical to constrain the recycling of trace elements and metals, and to quantify the halogen fluxes to the atmosphere via volcanic degassing. Here, the partitioning of bromine between coexisting aqueous fluids and hydrous granitic melts and its speciation in slab-derived fluids have been investigated in situ up to 840 °C and 2.2 GPa by X-ray fluorescence (SXRF) and absorption (XANES and EXAFS) spectroscopy in hydrothermal diamond-anvil cells. The partition coefficients Df/mBr range from 15.3 ± 1.0 to 2.0 ± 0.1, indicating the preferential uptake of Br by aqueous fluids at all investigated conditions. EXAFS analysis further evidences a gradual evolution of Br speciation from hydrated Br ions [Br(H2O)6]− in slab dehydration fluids to more complex structures invoving both Na ions and water molecules, [BrNax(H2O)y], in hydrous silicate melts and supercritical fluids released at greather depth (> 200 km). In dense fluids containing 60 wt % dissolved alkali-silicates and in hydrous Na2Si2O5 melts (10 wt % H2O), Br is found in a salt-like structure involving 6 nearest Na ions and several next-nearest O neighbors that are either from water molecules or the tetrahedral silicate network. Bromine (and likely chlorine and iodine) complexation with alkalis is thus an efficient mechanism for the mobilization and transport of halogens by hydrous silicate melts and supercritical fluids, which can carry high amounts of Br, up to the 1000 ppm level. Overall, our results suggest that both shallow dehydration fluids and deeper silicate-bearing fluids efficiently remove halogens from the slab in the sub-arc region, thus controling an efficient recycling of halogens in subduction zones.


2006 ◽  
Vol 46 ◽  
pp. 93-97 ◽  
Author(s):  
J. Stelling ◽  
Harald Behrens ◽  
Joachim Deubener ◽  
Stefan Mangold ◽  
Joerg Goettlicher

Diffusion and solubility of sulphur have important effects on the degassing of silicate melts. Both properties are closely related to the structural incorporation of sulphur in the melt. Depending on the oxygen fugacity, sulphur can be present as sulphide (S2-), sulphite (S4+) or sulphate (S6+). Sulphates play an important role in the industrial production of glasses especially in the fining process. The decomposition products of sulphate amass in bubbles which ascend and homogenize the melt. Structural incorporation of sulphur in glasses is studied by XANES (X-ray Absorption Near Edge Spectroscopy). Diffusion of sulphur is investigated in simple silicate systems using the diffusion couple technique. First diffusion profiles were measured in sodium trisilicate glasses by electron microprobe. The results indicate that sulphur diffusivity in high temperature melts is close to the Eyring diffusivity calculated from viscosity data.


2020 ◽  
Author(s):  
Huaiwei Ni

<p>Enhanced mutual solubility between silicate and water at elevated temperature and pressure in Earth’s interior (subduction zones in particular) allows the formation of supercritical geofluids with composition intermediate between silicate melts and aqueous fluids. The forming conditions of supercritical fluids are controlled by the critical curves, the wet solidi curves and the second critical endpoints of rock-H<sub>2</sub>O systems. With unusual physicochemical properties, supercritical fluids have the potential to play a crucial role in mediating material recycling at subduction zones, mobilizing and enriching ore-forming elements, inducing intermediate to deep focus earthquakes, and modulating Earth’s habitability. Challenges in the study of supercritical fluids using experimental and computational simulations as well as natural rocks and mineral deposits demand breakthroughs in future development of transformative technologies.</p>


2017 ◽  
Vol 453 ◽  
pp. 169-185 ◽  
Author(s):  
O.L.G. Alderman ◽  
M.C. Wilding ◽  
A. Tamalonis ◽  
S. Sendelbach ◽  
S.M. Heald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document