Supplementary material to "A high resolution lithospheric magnetic field model over southern Africa based on a joint inversion of CHAMP, Swarm, WDMAM and ground magnetic field data"

Author(s):  
Foteini Vervelidou ◽  
Erwan Thébault ◽  
Monika Korte
2018 ◽  
Author(s):  
Foteini Vervelidou ◽  
Erwan Thébault ◽  
Monika Korte

Abstract. We derive a lithospheric magnetic field model up to equivalent Spherical Harmonic degree 1000 over southern Africa. We rely on a joint inversion of satellite, near-surface and ground magnetic field data. The input data set consists of magnetic field vector measurements from the CHAMP satellite, across-track magnetic field differences from the Swarm mission, the World Digital Magnetic Anomaly Map and magnetic field measurements from repeat stations and three local INTERMAGNET observatories. For the inversion scheme, we use the Revised-Spherical Cap Harmonic Analysis (R-SCHA), a regional analysis technique able to deal with magnetic field measurements obtained at different altitudes. The model is carefully assessed and displayed at different altitudes and its spectral content is compared to high resolution global lithospheric field models. By comparing the shape of its spectrum to a statistical power spectrum of Earth's lithospheric magnetic field, we infer the mean magnetic thickness and the mean magnetization over southern Africa.


Solid Earth ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 897-910 ◽  
Author(s):  
Foteini Vervelidou ◽  
Erwan Thébault ◽  
Monika Korte

Abstract. We derive a lithospheric magnetic field model up to equivalent spherical harmonic degree 1000 over southern Africa. We rely on a joint inversion of satellite, near-surface, and ground magnetic field data. The input data set consists of magnetic field vector measurements from the CHAMP satellite, across-track magnetic field differences from the Swarm mission, the World Digital Magnetic Anomaly Map, and magnetic field measurements from repeat stations and three local INTERMAGNET observatories. For the inversion scheme, we use the revised spherical cap harmonic analysis (R-SCHA), a regional analysis technique able to deal with magnetic field measurements obtained at different altitudes. The model is carefully assessed and displayed at different altitudes and its spectral content is compared to high-resolution global lithospheric field models. By comparing the shape of its spectrum to a statistical power spectrum of Earth's lithospheric magnetic field, we infer the mean magnetic thickness and the mean magnetization over southern Africa.


2013 ◽  
Vol 56 (10) ◽  
pp. 1759-1768 ◽  
Author(s):  
JiaMing Ou ◽  
AiMin Du ◽  
E. Thébault ◽  
WenYao Xu ◽  
XiaoBo Tian ◽  
...  

2018 ◽  
Author(s):  
Ivan A. Pensionerov ◽  
Elena S. Belenkaya ◽  
Stanley W. H. Cowley ◽  
Igor I. Alexeev ◽  
Vladimir V. Kalegaev ◽  
...  

Abstract. One of the main features of Jupiter's magnetosphere is its equatorial magnetodisc, which significantly increases the field strength and size of the magnetosphere. Juno measurements of the magnetic field during the perijove 1 pass have allowed us to determine optimal parameters of the magnetodisc using the paraboloid magnetospheric magnetic field model, which employs analytic expressions for the magnetospheric current systems. Specifically within the model we determine the size of the Jovian magnetodisc and the magnetic field strength at its outer edge.


2007 ◽  
Vol 8 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Stefan Maus ◽  
Hermann Lühr ◽  
Martin Rother ◽  
Kumar Hemant ◽  
George Balasis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document