Review of manuscript Event couple spectral ratio Q method for earthquake clusters: application to North-West Bohemia by Kriegerowski et al., submitted to Solid Earth.

2018 ◽  
Author(s):  
Tomáš Fischer
2018 ◽  
Author(s):  
Marius Kriegerowski ◽  
Simone Cesca ◽  
Matthias Ohrnberger ◽  
Torsten Dahm ◽  
Frank Krüger

Abstract. We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q−1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wavefield seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms, but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to North-West Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp 


2021 ◽  
Author(s):  
Jordi Baro

<p>Earthquake catalogs exhibit strong spatio-temporal correlations. As such, earthquakes are often classified into clusters of correlated activity. Clusters themselves are traditionally classified in two different kinds: (i) bursts, with a clear hierarchical structure between a single strong mainshock, preceded by a few foreshocks and followed by a power-law decaying aftershock sequence, and (ii) swarms, exhibiting a non-trivial activity rate that cannot be reduced to such a simple hierarchy between events. </p><p>The Epidemic Aftershock Sequence (ETAS) model is a linear Hawkes point process able to reproduce earthquake clusters from empirical statistical laws [Ogata, 1998]. Although not always explicit, the ETAS model is often interpreted as the outcome of a background activity driven by external forces and a Galton-Watson branching process with one-to-one causal links between events [Saichev et al., 2005]. Declustering techniques based on field observations [Baiesi & Paczuski, 2004] can be used to infer the most likely causal links between events in a cluster. Following this method, Zaliapin and Ben‐Zion (2013) determined the statistical properties of earthquake clusters characterizing bursts and swarms, finding a relationship between the predominant cluster-class and the heat flow in seismic regions.</p><p>Here, I show how the statistical properties of clusters are related to the fundamental statistics of the underlying seismogenic process, modeled in two point-process paradigms [Baró, 2020].</p><p>The classification of clusters into bursts and swarms appears naturally in the standard ETAS model with homogeneous rates and are determined by the average branching ratio (nb) and the ratio between exponents α and b characterizing the production of aftershocks and the distribution of magnitudes, respectively. The scale-free ETAS model, equivalent to the BASS model [Turcotte, et al., 2007], and usual in cold active tectonic regions, is imposed by α=b and reproduces bursts. In contrast, by imposing α<0.5b, we recover the properties of swarms, characteristic of regions with high heat flow. </p><p>Alternatively, the same declustering methodology applied to a non-homogeneous Poisson process with a non-factorizable intensity, i.e. in absence of causal links, recovers swarms with α=0, i.e. a Poisson Galton-Watson process, with similar statistical properties to the ETAS model in the regime α<0.5b.</p><p>Therefore, while bursts are likely to represent actual causal links between events, swarms can either denote causal links with low α/b ratio or variations of the background rate caused by exogenous processes introducing local and transient stress changes. Furthermore, the redundancy in the statistical laws can be used to test the hypotheses posed by the ETAS model as a memory‐less branching process. </p><p>References:</p><ul><li> <p>Baiesi, M., & Paczuski, M. (2004). <em>Physical Review E</em>, 69, 66,106. doi:10.1103/PhysRevE.69.066106.</p> </li> <li> <p>Baró, J. (2020).  <em>Journal of Geophysical Research: Solid Earth,</em> 125, e2019JB018530. doi:10.1029/2019JB018530.</p> </li> <li> <p>Ogata, Y. (1998) <em>Annals of the Institute of Statistical Mathematics,</em> 50(2), 379–402. doi:10.1023/A:1003403601725.</p> </li> <li> <p>Saichev, A., Helmstetter, A. & Sornette, D. (2005) <em>Pure appl. geophys.</em> 162, 1113–1134. doi:10.1007/s00024-004-2663-6.</p> </li> <li> <p>Turcotte, D. L., Holliday, J. R., and Rundle, J. B. (2007), <em>Geophys. Res. Lett.</em>, 34, L12303, doi:10.1029/2007GL029696.</p> </li> <li> <p>Zaliapin, I., and Ben‐Zion, Y. (2013), <em>J. Geophys. Res. Solid Earth</em>, 118, 2865– 2877, doi:10.1002/jgrb.50178.</p> </li> </ul>


2014 ◽  
Vol 17 (4) ◽  
pp. 579-601 ◽  
Author(s):  
Jaroslav Řídký ◽  
Markéta Končelová ◽  
Radka Šumberová ◽  
Petr Limburský ◽  
Petr Květina

The aim of this study is to analyse the correlation between finds and ditches, the duration of ditch fills, and the manner of the demise of Late Neolithic rondels (Kreisgrabenanlagen) in the Czech Republic. Two comparable long-term projects are discussed here: Kolín (central Bohemia) and Vchynice (north-west Bohemia). Qualitative, quantitative, and spatial analyses of the different categories of finds (pottery fragments, lithics, daub, and faunal remains) from the ditch fills show that only finds from the bottom layers of the ditches were contemporary with the primary function of the rondels. However, the bottom layers often only contained a few artefacts. The richest parts of the ditches, the middle and upper layers, from both sites illustrated similar characteristics: after the rondels lost their primary function, the ditches were filled by both natural and cultural agents over a long period. As a consequence, some previous, and widely accepted, interpretations of the relationship between individual areas of rondels and their relationship with surrounding features, as well as the relationship of the finds from ditch fills to rondel function and chronology, need to be revisited.


Author(s):  
Silvie R. Kučerová ◽  
Zdeněk Kučera ◽  
Kateřina Novotná
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document