scholarly journals Impact of assimilating sea ice concentration, sea ice thickness and snow depth in a coupled ocean–sea ice modelling system

2019 ◽  
Vol 13 (2) ◽  
pp. 491-509 ◽  
Author(s):  
Sindre Fritzner ◽  
Rune Graversen ◽  
Kai H. Christensen ◽  
Philip Rostosky ◽  
Keguang Wang

Abstract. The accuracy of the initial state is very important for the quality of a forecast, and data assimilation is crucial for obtaining the best-possible initial state. For many years, sea-ice concentration was the only parameter used for assimilation into numerical sea-ice models. Sea-ice concentration can easily be observed by satellites, and satellite observations provide a full Arctic coverage. During the last decade, an increasing number of sea-ice related variables have become available, which include sea-ice thickness and snow depth, which are both important parameters in the numerical sea-ice models. In the present study, a coupled ocean–sea-ice model is used to assess the assimilation impact of sea-ice thickness and snow depth on the model. The model system with the assimilation of these parameters is verified by comparison with a system assimilating only ice concentration and a system having no assimilation. The observations assimilated are sea ice concentration from the Ocean and Sea Ice Satellite Application Facility, thin sea ice from the European Space Agency's (ESA) Soil Moisture and Ocean Salinity mission, thick sea ice from ESA's CryoSat-2 satellite, and a new snow-depth product derived from the National Space Agency's Advanced Microwave Scanning Radiometer (AMSR-E/AMSR-2) satellites. The model results are verified by comparing assimilated observations and independent observations of ice concentration from AMSR-E/AMSR-2, and ice thickness and snow depth from the IceBridge campaign. It is found that the assimilation of ice thickness strongly improves ice concentration, ice thickness and snow depth, while the snow observations have a smaller but still positive short-term effect on snow depth and sea-ice concentration. In our study, the seasonal forecast showed that assimilating snow depth led to a less accurate long-term estimation of sea-ice extent compared to the other assimilation systems. The other three gave similar results. The improvements due to assimilation were found to last for at least 3–4 months, but possibly even longer.

2018 ◽  
Author(s):  
Sindre Fritzner ◽  
Rune Graversen ◽  
Kai H. Christensen ◽  
Philip Rostosky ◽  
Keguang Wang

Abstract. The accuracy of the initial state is very important for the quality of a forecast, and data assimilation is crucial for obtaining a best possible initial state. For many years, sea-ice concentration was the only parameter used for assimilation into numerical sea-ice models. Sea-ice concentration can easily be observed by satellites, and satellite observations provide a full Arctic coverage. During the last decade, an increasing number of sea-ice related variables have become available, these include sea-ice thickness and snow depth, which are both important parameters in the numerical sea-ice models. In the present study, a coupled ocean-sea-ice model is used to asses the assimilation impact of sea-ice thickness and snow depth on the model. The model system with the assimilation of these parameters is verified by comparison with a system assimilating only ice concentration and a system having no assimilation. The observations assimilated are sea ice concentration from the Ocean and Sea Ice Satellite Application facility, thin sea ice thickness from the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity mission, thick sea ice thickness from ESA’s CryoSat satellite, and a new snow depth product derived from the National Space Agency’s Advanced Microwave Scanning Radiometers (AMSR-E/AMSR-2) satellites. The model results are verified by comparing assimilated observations and independent observations of ice concentration from AMSR-E/AMSR-2, and ice thickness and snow depth from the IceBridge campaign. It is found that the assimilation of ice thickness strongly improves ice concentration, ice thickness and snow depth, while the snow observations have a positive effect on snow thickness and ice concentration. In our study, the seasonal forecast showed that assimilating snow depth lead to a worse estimation of sea-ice extent compared to the other assimilation systems, the other three gave similar results. The improvements due to assimilation were found to last for at least 3–4 months, possibly even longer.


2012 ◽  
Vol 5 (2) ◽  
pp. 1627-1667 ◽  
Author(s):  
P. Mathiot ◽  
C. König Beatty ◽  
T. Fichefet ◽  
H. Goosse ◽  
F. Massonnet ◽  
...  

Abstract. Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice-ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an Ensemble Kalman Filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged sea ice) data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the assimilation of synthetic data (i.e., model-generated data) and, secondly, through the assimilation of satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.


2012 ◽  
Vol 5 (6) ◽  
pp. 1501-1515 ◽  
Author(s):  
P. Mathiot ◽  
C. König Beatty ◽  
T. Fichefet ◽  
H. Goosse ◽  
F. Massonnet ◽  
...  

Abstract. Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice–ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an ensemble Kalman filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged) data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the use of synthetic data (i.e. model-generated data), and secondly, through the assimilation of real satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.


2017 ◽  
Vol 30 (21) ◽  
pp. 8429-8446 ◽  
Author(s):  
Zhiqiang Chen ◽  
Jiping Liu ◽  
Mirong Song ◽  
Qinghua Yang ◽  
Shiming Xu

Here sea ice concentration derived from the Special Sensor Microwave Imager/Sounder and thickness derived from the Soil Moisture and Ocean Salinity and CryoSat-2 satellites are assimilated in the National Centers for Environmental Prediction Climate Forecast System using a localized error subspace transform ensemble Kalman filter (LESTKF). Three ensemble-based hindcasts are conducted to examine impacts of the assimilation on Arctic sea ice prediction, including CTL (without any assimilation), LESTKF-1 (with initial sea ice assimilation only), and LESTKF-E5 (with every 5-day sea ice assimilation). Assessment with the assimilated satellite products and independent sea ice thickness datasets shows that assimilating sea ice concentration and thickness leads to improved Arctic sea ice prediction. LESTKF-1 improves sea ice forecast initially. The initial improvement gradually diminishes after ~3-week integration for sea ice extent but remains quite steady through the integration for sea ice thickness. Large biases in both the ice extent and thickness in CTL are remarkably reduced through the hindcast in LESTKF-E5. Additional numerical experiments suggest that the hindcast with sea ice thickness assimilation dramatically reduces systematic bias in the predicted ice thickness compared with sea ice concentration assimilation only or without any assimilation, which also benefits the prediction of sea ice extent and concentration due to their covariability. Hence, the corrected state of sea ice thickness would aid in the forecast procedure. Increasing the number of ensemble members or extending the integration period to generate estimates of initial model states and uncertainties seems to have small impacts on sea ice prediction relative to LESTKF-E5.


2021 ◽  
Author(s):  
Francois Massonnet ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Ed Blockley ◽  
Pablo Ortega Montilla ◽  
...  

<p>It is well established that winter and spring Arctic sea-ice thickness anomalies are a key source of predictability for late summer sea-ice concentration. While numerical general circulation models (GCMs) are increasingly used to perform seasonal predictions, they are not systematically taking advantage of the wealth of polar observations available. Data assimilation, the study of how to constrain GCMs to produce a physically consistent state given observations and their uncertainties, remains, therefore, an active area of research in the field of seasonal prediction. With the recent advent of satellite laser and radar altimetry, large-scale estimates of sea-ice thickness have become available for data assimilation in GCMs. However, the sea-ice thickness is never directly observed by altimeters, but rather deduced from the measured sea-ice freeboard (the height of the emerged part of the sea ice floe) based on several assumptions like the depth of snow on sea ice and its density, which are both often poorly estimated. Thus, observed sea-ice thickness estimates are potentially less reliable than sea-ice freeboard estimates. Here, using the EC-Earth3 coupled forecasting system and an ensemble Kalman filter, we perform a set of sensitivity tests to answer the following questions: (1) Does the assimilation of late spring observed sea-ice freeboard or thickness information yield more skilful predictions than no assimilation at all? (2) Should the sea-ice freeboard assimilation be preferred over sea-ice thickness assimilation? (3) Does the assimilation of observed sea-ice concentration provide further constraints on the prediction? We address these questions in the context of a realistic test case, the prediction of 2012 summer conditions, which led to the all-time record low in Arctic sea-ice extent. We finally formulate a set of recommendations for practitioners and future users of sea ice observations in the context of seasonal prediction.</p>


2019 ◽  
Vol 13 (2) ◽  
pp. 521-543 ◽  
Author(s):  
Leandro Ponsoni ◽  
François Massonnet ◽  
Thierry Fichefet ◽  
Matthieu Chevallier ◽  
David Docquier

Abstract. The ocean–sea ice reanalyses are one of the main sources of Arctic sea ice thickness data both in terms of spatial and temporal resolution, since observations are still sparse in time and space. In this work, we first aim at comparing how the sea ice thickness from an ensemble of 14 reanalyses compares with different sources of observations, such as moored upward-looking sonars, submarines, airbornes, satellites, and ice boreholes. Second, based on the same reanalyses, we intend to characterize the timescales (persistence) and length scales of sea ice thickness anomalies. We investigate whether data assimilation of sea ice concentration by the reanalyses impacts the realism of sea ice thickness as well as its respective timescales and length scales. The results suggest that reanalyses with sea ice data assimilation do not necessarily perform better in terms of sea ice thickness compared with the reanalyses which do not assimilate sea ice concentration. However, data assimilation has a clear impact on the timescales and length scales: reanalyses built with sea ice data assimilation present shorter timescales and length scales. The mean timescales and length scales for reanalyses with data assimilation vary from 2.5 to 5.0 months and 337.0 to 732.5 km, respectively, while reanalyses with no data assimilation are characterized by values from 4.9 to 7.8 months and 846.7 to 935.7 km, respectively.


2021 ◽  
Author(s):  
Emma Kathleen Fiedler ◽  
Matthew Martin ◽  
Ed Blockley ◽  
Davi Mignac ◽  
Nicolas Fournier ◽  
...  

Abstract. The feasibility of assimilating SIT (sea ice thickness) observations derived from CryoSat-2 along-track measurements of sea ice freeboard is successfully demonstrated using a 3D-Var assimilation scheme, NEMOVAR, within the Met Office’s global, coupled ocean-sea ice model, FOAM (Forecast Ocean Assimilation Model). The Arctic freeboard measurements are produced by CPOM (Centre for Polar Observation and Modelling) and are converted to SIT within FOAM using modelled snow depth. This is the first time along-track observations of SIT have been used in this way, with other centres assimilating gridded and temporally-averaged observations. The assimilation greatly improves the SIT analysis and forecast fields generated by FOAM, particularly in the Canadian Arctic. Arctic-wide observation-minus-background assimilation statistics show improvements of 0.75 m mean difference and 0.41 m RMSD (root-mean-square difference) in the freeze-up period, and 0.46 m mean difference and 0.33 m RMSD in the ice break-up period, for 2015–2017. Validation of the SIT analysis against independent springtime in situ SIT observations from NASA Operation IceBridge shows improvement in the SIT analysis of 0.61 m mean difference (0.42 m RMSD) compared to a control without SIT assimilation. Similar improvements are seen in the FOAM 5-day SIT forecast. Validation of the SIT assimilation with independent BGEP (Beaufort Gyre Exploration Project) sea ice draft observations does not show an improvement, since the assimilated CryoSat-2 observations compare similarly to the model without assimilation in this region. Comparison with Air-EM (airborne electromagnetic induction) combined measurements of SIT and snow depth shows poorer results for the assimilation compared to the control, which may be evidence of noise in the SIT analysis, sampling error, or uncertainties in the modelled snow depth, the assimilated observations, or the validation observations themselves. The SIT analysis could be improved by upgrading the observation uncertainties used in the assimilation. Despite the lack of CryoSat-2 SIT observations over the summer due to the effect of meltponds on retrievals, it is shown that the model is able to retain improvements to the SIT field throughout the summer months, due to previous SIT assimilation. This also leads to regional improvements in the July SIC (sea ice concentration) of 5 % RMSD in the European sector, due to slower melt of the thicker modelled sea ice.


2022 ◽  
Vol 16 (1) ◽  
pp. 61-85
Author(s):  
Emma K. Fiedler ◽  
Matthew J. Martin ◽  
Ed Blockley ◽  
Davi Mignac ◽  
Nicolas Fournier ◽  
...  

Abstract. The feasibility of assimilating sea ice thickness (SIT) observations derived from CryoSat-2 along-track measurements of sea ice freeboard is successfully demonstrated using a 3D-Var assimilation scheme, NEMOVAR, within the Met Office's global, coupled ocean–sea-ice model, Forecast Ocean Assimilation Model (FOAM). The CryoSat-2 Arctic freeboard measurements are produced by the Centre for Polar Observation and Modelling (CPOM) and are converted to SIT within FOAM using modelled snow depth. This is the first time along-track observations of SIT have been used in this way, with other centres assimilating gridded and temporally averaged observations. The assimilation leads to improvements in the SIT analysis and forecast fields generated by FOAM, particularly in the Canadian Arctic. Arctic-wide observation-minus-background assimilation statistics for 2015–2017 show improvements of 0.75 m mean difference and 0.41 m root-mean-square difference (RMSD) in the freeze-up period and 0.46 m mean difference and 0.33 m RMSD in the ice break-up period. Validation of the SIT analysis against independent springtime in situ SIT observations from NASA Operation IceBridge (OIB) shows improvement in the SIT analysis of 0.61 m mean difference (0.42 m RMSD) compared to a control without SIT assimilation. Similar improvements are seen in the FOAM 5 d SIT forecast. Validation of the SIT assimilation with independent Beaufort Gyre Exploration Project (BGEP) sea ice draft observations does not show an improvement, since the assimilated CryoSat-2 observations compare similarly to the model without assimilation in this region. Comparison with airborne electromagnetic induction (Air-EM) combined measurements of SIT and snow depth shows poorer results for the assimilation compared to the control, despite covering similar locations to the OIB and BGEP datasets. This may be evidence of sampling uncertainty in the matchups with the Air-EM validation dataset, owing to the limited number of observations available over the time period of interest. This may also be evidence of noise in the SIT analysis or uncertainties in the modelled snow depth, in the assimilated SIT observations, or in the data used for validation. The SIT analysis could be improved by upgrading the observation uncertainties used in the assimilation. Despite the lack of CryoSat-2 SIT observations available for assimilation over the summer due to the detrimental effect of melt ponds on retrievals, it is shown that the model is able to retain improvements to the SIT field throughout the summer months due to prior, wintertime SIT assimilation. This also results in regional improvements to the July modelled sea ice concentration (SIC) of 5 % RMSD in the European sector, due to slower melt of the thicker sea ice.


2019 ◽  
Vol 65 (253) ◽  
pp. 813-821 ◽  
Author(s):  
Longjiang Mu ◽  
Xi Liang ◽  
Qinghua Yang ◽  
Jiping Liu ◽  
Fei Zheng

AbstractIn an effort to improve the reliability of Arctic sea-ice predictions, an ensemble-based Arctic Ice Ocean Prediction System (ArcIOPS) has been developed to meet operational demands. The system is based on a regional Arctic configuration of the Massachusetts Institute of Technology general circulation model. A localized error subspace transform ensemble Kalman filter is used to assimilate the weekly merged CryoSat-2 and Soil Moisture and Ocean Salinity sea-ice thickness data together with the daily Advanced Microwave Scanning Radiometer 2 (AMSR2) sea-ice concentration data. The weather forecasts from the Global Forecast System of the National Centers for Environmental Prediction drive the sea ice–ocean coupled model. The ensemble mean sea-ice forecasts were used to facilitate the Chinese National Arctic Research Expedition in summer 2017. The forecasted sea-ice concentration is evaluated against AMSR2 and Special Sensor Microwave Imager/Sounder sea-ice concentration data. The forecasted sea-ice thickness is compared to the in-situ observations and the Pan-Arctic Ice-Ocean Modeling and Assimilation System. These comparisons show the promising potential of ArcIOPS for operational Arctic sea-ice forecasts. Nevertheless, the forecast bias in the Beaufort Sea calls for a delicate parameter calibration and a better design of the assimilation system.


2020 ◽  
Vol 61 (82) ◽  
pp. 97-105
Author(s):  
Jun Ono ◽  
Yoshiki Komuro ◽  
Hiroaki Tatebe

AbstractThe impact of April sea-ice thickness (SIT) initialization on the predictability of September sea-ice extent (SIE) is investigated based on a series of perfect model ensemble experiments using the MIROC5.2 climate model. Ensembles with April SIT initialization can accurately predict the September SIE for greater lead times than in cases without the initialization – up to 2 years ahead. The persistence of SIT correctly initialized in April contributes to the skilful prediction of SIE in the first September. On the other hand, errors in the initialization of SIT in April cause errors in the predicted sea-ice concentration and thickness in the Pacific sector from July to September and consequently influence the predictive skill with respect to SIE in September. The present study suggests that initialization of the April SIT in the Pacific sector significantly improves the accuracy of the September SIE forecasts by decreasing the errors in sea-ice fields from July to September.


Sign in / Sign up

Export Citation Format

Share Document