assimilation model
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 34)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 16 (1) ◽  
pp. 61-85
Author(s):  
Emma K. Fiedler ◽  
Matthew J. Martin ◽  
Ed Blockley ◽  
Davi Mignac ◽  
Nicolas Fournier ◽  
...  

Abstract. The feasibility of assimilating sea ice thickness (SIT) observations derived from CryoSat-2 along-track measurements of sea ice freeboard is successfully demonstrated using a 3D-Var assimilation scheme, NEMOVAR, within the Met Office's global, coupled ocean–sea-ice model, Forecast Ocean Assimilation Model (FOAM). The CryoSat-2 Arctic freeboard measurements are produced by the Centre for Polar Observation and Modelling (CPOM) and are converted to SIT within FOAM using modelled snow depth. This is the first time along-track observations of SIT have been used in this way, with other centres assimilating gridded and temporally averaged observations. The assimilation leads to improvements in the SIT analysis and forecast fields generated by FOAM, particularly in the Canadian Arctic. Arctic-wide observation-minus-background assimilation statistics for 2015–2017 show improvements of 0.75 m mean difference and 0.41 m root-mean-square difference (RMSD) in the freeze-up period and 0.46 m mean difference and 0.33 m RMSD in the ice break-up period. Validation of the SIT analysis against independent springtime in situ SIT observations from NASA Operation IceBridge (OIB) shows improvement in the SIT analysis of 0.61 m mean difference (0.42 m RMSD) compared to a control without SIT assimilation. Similar improvements are seen in the FOAM 5 d SIT forecast. Validation of the SIT assimilation with independent Beaufort Gyre Exploration Project (BGEP) sea ice draft observations does not show an improvement, since the assimilated CryoSat-2 observations compare similarly to the model without assimilation in this region. Comparison with airborne electromagnetic induction (Air-EM) combined measurements of SIT and snow depth shows poorer results for the assimilation compared to the control, despite covering similar locations to the OIB and BGEP datasets. This may be evidence of sampling uncertainty in the matchups with the Air-EM validation dataset, owing to the limited number of observations available over the time period of interest. This may also be evidence of noise in the SIT analysis or uncertainties in the modelled snow depth, in the assimilated SIT observations, or in the data used for validation. The SIT analysis could be improved by upgrading the observation uncertainties used in the assimilation. Despite the lack of CryoSat-2 SIT observations available for assimilation over the summer due to the detrimental effect of melt ponds on retrievals, it is shown that the model is able to retain improvements to the SIT field throughout the summer months due to prior, wintertime SIT assimilation. This also results in regional improvements to the July modelled sea ice concentration (SIC) of 5 % RMSD in the European sector, due to slower melt of the thicker sea ice.


2022 ◽  
Vol 34 (1) ◽  
pp. 015101
Author(s):  
Sen Li ◽  
Chuangxin He ◽  
Yingzheng Liu

Author(s):  
Ali Mohtashami ◽  
Seyed Arman Hashemi Monfared ◽  
Gholamreza Azizyan ◽  
Abolfazl Akbarpour

Abstract In recent decades, due to the population growth and low precipitation, the overexploitation of ground water resources has become an important issue. To ensure a sustainable scheme for these resources, understanding the behavior of the aquifers is a key step. This study takes a numerical modeling approach to investigate the behavior of an unconfined aquifer in an arid area located in the east of Iran. A novel hybrid model is proposed that couples the numerical modeling to a data assimilation model to remove the uncertainty in the hydrodynamic parameters of the aquifer including the hydraulic conductivity coefficients and specific yields. The uncertainty that exists in these parameters results in unreliability of the head values acquired from the models. Meshless local Petrov-Galerkin (MLPG) is used as the numerical model, and particle filter (PF) is our data assimilation model. These models are implemented in the MATLAB software. We have calibrated and validated our PF-MLPG model by the observation head data from the piezometers. The RMSE in head values for our model and other commonly used numerical models in the literature including the finite difference method and MPLG are calculated as 0.166, 1.197 and 0.757 m, respectively. This fact shows the necessity of using this method in each aquifer.


Author(s):  
Jane Wottawa ◽  
Martine Adda-Decker ◽  
Frédéric Isel

Abstract The present electroencephalographical multi-speaker MMN oddball experiment was designed to study the phonological processing of German native and non-native speech sounds. Precisely, we focused on the perception of German /ɪ-iː/, /ɛ-ɛː/, /a-aː/ and the fricatives [ʃ] and [ç] in German natives (GG) and French learners of German (FG). As expected, our results showed that GG were able to discriminate all the critical vowel contrasts. In contrast, FG, despite their high L2 proficiency level, were only marginally sensitive to vowel length variations. Finally, neither GG nor FG discriminated the opposition between [ʃ] and [ç], as revealed by the absence of MMN response. This latter finding was interpreted in terms of low perceptual salience. Taken together, the present findings lend partial support to the Perceptual Assimilation Model for late bilinguals (PAM-L2) for speech perception of non-native phonological contrasts.


2021 ◽  
Author(s):  
Emma Kathleen Fiedler ◽  
Matthew Martin ◽  
Ed Blockley ◽  
Davi Mignac ◽  
Nicolas Fournier ◽  
...  

Abstract. The feasibility of assimilating SIT (sea ice thickness) observations derived from CryoSat-2 along-track measurements of sea ice freeboard is successfully demonstrated using a 3D-Var assimilation scheme, NEMOVAR, within the Met Office’s global, coupled ocean-sea ice model, FOAM (Forecast Ocean Assimilation Model). The Arctic freeboard measurements are produced by CPOM (Centre for Polar Observation and Modelling) and are converted to SIT within FOAM using modelled snow depth. This is the first time along-track observations of SIT have been used in this way, with other centres assimilating gridded and temporally-averaged observations. The assimilation greatly improves the SIT analysis and forecast fields generated by FOAM, particularly in the Canadian Arctic. Arctic-wide observation-minus-background assimilation statistics show improvements of 0.75 m mean difference and 0.41 m RMSD (root-mean-square difference) in the freeze-up period, and 0.46 m mean difference and 0.33 m RMSD in the ice break-up period, for 2015–2017. Validation of the SIT analysis against independent springtime in situ SIT observations from NASA Operation IceBridge shows improvement in the SIT analysis of 0.61 m mean difference (0.42 m RMSD) compared to a control without SIT assimilation. Similar improvements are seen in the FOAM 5-day SIT forecast. Validation of the SIT assimilation with independent BGEP (Beaufort Gyre Exploration Project) sea ice draft observations does not show an improvement, since the assimilated CryoSat-2 observations compare similarly to the model without assimilation in this region. Comparison with Air-EM (airborne electromagnetic induction) combined measurements of SIT and snow depth shows poorer results for the assimilation compared to the control, which may be evidence of noise in the SIT analysis, sampling error, or uncertainties in the modelled snow depth, the assimilated observations, or the validation observations themselves. The SIT analysis could be improved by upgrading the observation uncertainties used in the assimilation. Despite the lack of CryoSat-2 SIT observations over the summer due to the effect of meltponds on retrievals, it is shown that the model is able to retain improvements to the SIT field throughout the summer months, due to previous SIT assimilation. This also leads to regional improvements in the July SIC (sea ice concentration) of 5 % RMSD in the European sector, due to slower melt of the thicker modelled sea ice.


2021 ◽  
Vol 1883 (1) ◽  
pp. 012035
Author(s):  
Jialin Lang ◽  
Feng Qiu ◽  
Pin Wu

2021 ◽  
Author(s):  
Francois Massonnet

<p>Polar Regions are viewed by many as "observational deserts", as in-situ measurements there are indeed scarce relative to other regions. The increasing availability of satellite observations does not entirely solve the problem, due to persistent uncertainties in the derived products. Climate models have been instrumental in completing the big picture, but they are themselves subject to errors, some of which are systematic. How to take advantage of the respective strengths of observations and models, while minimizing their respective weaknesses?  To illustrate this point, I will discuss how recent advances in data assimilation, model evaluation, and numerical modeling have enabled progress on addressing important questions in polar research, such as: what are the causes of the recent Antarctic sea ice variability? What might the future of Arctic sea ice look like? How to improve the skill of seasonal sea ice predictions? How should the existing observational network be improved at high latitudes? What are the priorities in terms of modeling? By running through these cases, I will provide support for the emerging hypothesis that "the whole is greater than the sum of its parts": treating observations and climate models as two noisy instances of the same, unknown truth, gives access to answers that would not have been possible using each source separately.</p>


Sign in / Sign up

Export Citation Format

Share Document