Supplementary material to "Sensitivity of Greenland ice sheet projections to spatial resolution in higher-order simulations: the AWI contribution to ISMIP6-Greenland using ISSM"

Author(s):  
Martin Rückamp ◽  
Heiko Goelzer ◽  
Angelika Humbert
2020 ◽  
Author(s):  
Paolo Colosio ◽  
Marco Tedesco ◽  
Xavier Fettweis ◽  
Roberto Ranzi

Abstract. Surface melting is a major component of the Greenland ice sheet (GrIS) surface mass balance, affecting sea level rise through direct runoff and the modulation on ice dynamics and hydrological processes, supraglacially, englacially and subglacially. Passive microwave (PMW) brightness temperature observations are of paramount importance in studying the spatial and temporal evolution of surface melting in view of their long temporal coverage (1979–to date) and high temporal resolution (daily). However, a major limitation of PMW datasets has been the relatively coarse spatial resolution, being historically of the order of tens of kilometres. Here, we use a newly released passive microwave dataset (37 GHz, horizontal polarization) made available through the NASA MeASUREs program to study the spatiotemporal evolution of surface melting over the GrIS at an enhanced spatial resolution of 3.125 Km. We assess the outputs of different detection algorithms through data collected by Automatic Weather Stations (AWS) and the outputs of the MAR regional climate model. We found that surface melting is well captured using a dynamic algorithm based on the outputs of MEMLS model, capable to detect sporadic and persistent melting. Our results indicate that, during the reference period 1979–2019 (1988–2019), surface melting over the GrIS increased in terms of both duration, up to ~4.5 (2.9) days per decade, and extension, up to 6.9 % (3.6 %) of the GrIS surface extent per decade, according to the MEMLS algorithm. Furthermore, the melting season has started up to ~4 (2.5) days earlier and ended ~7 (3.9) days later per decade. We also explored the information content of the enhanced resolution dataset with respect to the one at 25 km and MAR outputs through a semi-variogram approach. We found that the enhanced product is more sensitive to local scale processes, hence confirming the potential interest of this new enhanced product for studying surface melting over Greenland at a higher spatial resolution than the historical products and monitor its impact on sea level rise. This offers the opportunity to improve our understanding of the processes driving melting, to validate modelled melt extent at high resolution and potentially to assimilate this data in climate models.


Author(s):  
Joseph M. Cook ◽  
Andrew J. Tedstone ◽  
Christopher Williamson ◽  
Jenine McCutcheon ◽  
Andrew J. Hodson ◽  
...  

2012 ◽  
Vol 6 (4) ◽  
pp. 2961-3010
Author(s):  
J. J. Fürst ◽  
H. Goelzer ◽  
P. Huybrechts

Abstract. We use a three-dimensional thermo-mechanically coupled model of the Greenland ice sheet to assess the effects of marginal perturbations on volume changes on centennial time scales. The model is designed to allow for five ice dynamic formulations using different approximations to the force balance. The standard model is based on the shallow ice approximation for both ice deformation and basal sliding. A second model version relies on a higher-order Blatter/Pattyn type of core that resolves effects from gradients in longitudinal stresses and transverse horizontal shearing, i.e. membrane-like stresses. Together with three intermediate model versions, these five versions allow for gradually more dynamic feedbacks from membrane stresses. Idealised experiments were conducted on various resolutions to compare the time-dependent response to imposed accelerations at the marine ice front. If such marginal accelerations are to have an appreciable effect on total mass loss on a century time scale, a fast mechanism to transmit such perturbations inland is required. While the forcing is independent of the model version, inclusion of direct horizontal coupling allows the initial speedup to reach several tens of kilometres inland. Within one century, effects from gradients in membrane stress alter the inland signal propagation and transmit additional dynamic thinning to the ice sheet interior. But the centennial overall volume loss differs only by some percents from the standard model as the dominant response is a diffusive inland propagation of geometric changes. In our experiments, the volume response is even attenuated by direct horizontal coupling. The reason is a faster adjustment of the sliding regime by instant stress transmission in models that account for the effect of membrane stresses. Ultimately, horizontal coupling decreases the reaction time to perturbations at the ice sheet margin.


Sign in / Sign up

Export Citation Format

Share Document