circulation change
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 2)

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 664
Author(s):  
Xiao Dong ◽  
Renping Lin

In this study, the climatological precipitation increase from July to August over the western North Pacific (WNP) region was investigated through observations and simulations in the Coupled Model Intercomparison Project Phase 6 (CMIP6), atmospheric model simulations and historical experiments. Firstly, observational analysis showed that the precipitation increase is associated with a decrease in the local sea surface temperature (SST), indicating that the precipitation increase is not driven by the change in SST. In addition, the pattern of precipitation increase is similar to the vertical motion change at 500-hPa, suggesting that the precipitation increase is related to the circulation change. Moisture budget analysis further confirmed this relation. In addition to the observational analysis, the outputs from 26 CMIP6 models were further evaluated. Compared with atmospheric model simulations, air–sea coupled models largely improve the simulation of the climatological precipitation increase from July to August. Furthermore, model simulations confirmed that the bias in the precipitation increase is intimately associated with the circulation change bias. Thus, two factors are responsible for the bias of the precipitation increase from July to August in climate models: air–sea coupling processes and the performance in vertical motion change.


2021 ◽  
Author(s):  
Emanuele Bevacqua ◽  
Giuseppe Zappa ◽  
Theodore G Shepherd

<p>Wintertime extreme precipitation from cyclone clusters, i.e. consecutive cyclones moving across the same region, can lead to flooding and devastating socio-economic impacts in Europe. Previous studies have suggested that the future direction of the changes in these events are uncertain across climate models. By employing an impact-based metric of accumulated precipitation extremes, we show that projections of cyclone clusters are instead broadly robust, i.e. consistent in sign, across models. A novel physical diagnostic shows that accumulated precipitation extremes are projected to grow by only +1.0 %/K on average across Europe, although the mean precipitation per cyclone increases by +4.7 %/K. This results from a decreased number of clustered cyclones, associated with decreased wintertime storminess, the extent of which varies from northern to southern Europe and depends on the future storyline of atmospheric circulation change. Neglecting the changes in the number of clustered cyclones, i.e. assuming that accumulated precipitation extremes would change as the mean precipitation per cyclone, would lead to overestimating the population affected by increased accumulated wintertime precipitation extremes by 130–490 million across Europe.</p>


2020 ◽  
Vol 20 (12) ◽  
pp. 3225-3243
Author(s):  
Imen Turki ◽  
Lisa Baulon ◽  
Nicolas Massei ◽  
Benoit Laignel ◽  
Stéphane Costa ◽  
...  

Abstract. This research examines the nonstationary dynamics of extreme surges along the English Channel coasts and seeks to make their connection to the climate patterns at different timescales by the use of a detailed spectral analysis in order to gain insights into the physical mechanisms relating the global atmospheric circulation to the local-scale variability of the monthly extreme surges. This variability highlights different oscillatory components from the interannual (∼1.5, ∼2–4, ∼5–8 years) to the interdecadal (∼12–16 years) scales with mean explained variances of ∼25 %–32 % and ∼2 %–4 % of the total variability, respectively. Using the two hypotheses that the physical mechanisms of the atmospheric circulation change according to the timescales and their connection with the local variability improves the prediction of the extremes, we have demonstrated statistically significant relationships of ∼1.5, ∼2–4, ∼5–8 and 12–16 years with the different climate oscillations of sea level pressure, zonal wind, North Atlantic Oscillation and Atlantic Multidecadal Oscillation, respectively. Such physical links have been used to implement the parameters of the time-dependent generalized extreme value (GEV) distribution models. The introduced climate information in the GEV parameters has considerably improved the prediction of the different timescales of surges with an explained variance higher than 60 %. This improvement exhibits their non-linear relationship with the large-scale atmospheric circulation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiangpeng Cui ◽  
Shilong Piao ◽  
Chris Huntingford ◽  
Xuhui Wang ◽  
Xu Lian ◽  
...  

Abstract The global monsoon is characterised by transitions between pronounced dry and wet seasons, affecting food security for two-thirds of the world’s population. Rising atmospheric CO2 influences the terrestrial hydrological cycle through climate-radiative and vegetation-physiological forcings. How these two forcings affect the seasonal intensity and characteristics of monsoonal precipitation and runoff is poorly understood. Here we use four Earth System Models to show that in a CO2-enriched climate, radiative forcing changes drive annual precipitation increases for most monsoon regions. Further, vegetation feedbacks substantially affect annual precipitation in North and South America and Australia monsoon regions. In the dry season, runoff increases over most monsoon regions, due to stomatal closure-driven evapotranspiration reductions and associated atmospheric circulation change. Our results imply that flood risks may amplify in the wet season. However, the lengthening of the monsoon rainfall season and reduced evapotranspiration will shorten the water resources scarcity period for most monsoon regions.


2020 ◽  
Vol 33 (14) ◽  
pp. 5829-5843 ◽  
Author(s):  
A. Tuel ◽  
E. A. B. Eltahir

AbstractHigher precipitation is expected over most of the world’s continents under climate change, except for a few specific regions where models project robust declines. Among these, the Mediterranean stands out as a result of the magnitude and significance of its winter precipitation decline. Locally, up to 40% of winter precipitation could be lost, setting strong limits on water resources that will constrain the ability of the region to develop and grow food, affecting millions of already water-stressed people and threatening the stability of this tense and complex area. To this day, however, a theory explaining the special nature of this region as a climate change hot spot is still lacking. Regional circulation changes, dominated by the development of a strong anomalous ridge, are thought to drive the winter precipitation decline, but their origins and potential contributions to regional hydroclimate change remain elusive. Here, we show how wintertime Mediterranean circulation trends can be seen as the combined response to two independent forcings: robust changes in large-scale, upper-tropospheric flow and the reduction in the regional land–sea temperature gradient that is characteristic of this region. In addition, we discuss how the circulation change can account for the magnitude and spatial structure of the drying. Our findings pave the way for better understanding and improved modeling of the future Mediterranean hydroclimate.


2020 ◽  
Vol 33 (7) ◽  
pp. 2627-2644
Author(s):  
Yongkun Xie ◽  
Guoxiong Wu ◽  
Yimin Liu ◽  
Jianping Huang

AbstractThe three-dimensional connections between Eurasian cooling and Arctic warming since 1979 were investigated using potential vorticity (PV) dynamics. We found that Eurasian cooling can be regulated by Arctic warming through PV adaptation and PV advection. Here, PV adaptation refers to the adaptation of PV to forcing and coherent dynamic–thermodynamic adaptation to PV change. In a PV perspective, first, the anticyclonic circulation change over the Arctic is produced by a negative PV change through PV adaptation, in which the change means the linear trend from 1979 to 2017. The negative PV change is directly regulated by Arctic warming because the vertical structure of Arctic warming is stronger at lower levels, which generates a negative PV change through the diabatic heating effect. Second, the circulation change produces a change in horizontal PV advection due to the existence of climatological PV gradients. Thus, as a balanced result, both the circulation change and PV change extend to the midlatitudes through horizontal PV advection and PV adaptation. Eventually, Eurasian cooling at the surface and in the lower troposphere is dominated by PV changes at the surface through PV adaptation. Meanwhile, enhanced Eurasian cooling in the middle troposphere is dominated by top-down influences of upper-level PV change through PV adaptation. Nevertheless, the upper-level PV changes are still contributed to by horizontal PV advection associated with Arctic warming. Overall, the general dynamics connecting Eurasian cooling with Arctic warming are demonstrated in a PV view.


2020 ◽  
Author(s):  
Yongkun Xie ◽  
Guoxiong Wu ◽  
Yimin Liu

<p>The three-dimensional connections between Eurasian cooling and Arctic warming since 1979 were investigated using potential vorticity (PV) dynamics. We found that Eurasian cooling can be regulated by Arctic warming through PV adaptation and PV advection. Here, PV adaptation refers to the adaptation of PV to forcing and coherent dynamic/thermodynamic adaptation to PV change. In a PV perspective, first, the anticyclonic circulation change over the Arctic is produced by a negative PV change through PV adaptation, in which the change means the linear trend from 1979~2017. The negative PV change is directly regulated by Arctic warming because the vertical structure of Arctic warming is stronger at lower levels, which generates a negative PV change through the diabatic heating effect. Second, the circulation change produces a change in horizontal PV advection due to the existence of climatological PV gradients. Thus, as a balanced result, both the circulation change and PV change extend to mid-latitude through horizontal PV advection and PV adaptation. Eventually, Eurasian cooling at the surface and in the lower troposphere is dominated by PV changes at the surface through PV adaptation. Meanwhile, enhanced Eurasian cooling in the middle troposphere is dominated by top-down influences of upper-level PV change through PV adaptation. Nevertheless, the upper-level PV changes are still contributed by horizontal PV advection associated with Arctic warming. Overall, the general dynamics connecting Eurasian cooling with Arctic warming is demonstrated in a PV view.</p>


2020 ◽  
Author(s):  
Finn Süfke ◽  
Frerk Pöppelmeier ◽  
Patrick Blaser ◽  
Jörg Lippold

<p>In 2004 McManus et al. published their famous <sup>231</sup>Pa/<sup>230</sup>Th record from the Bermuda Rise revealing millennial-scale changes in circulation strength back to the Last Glacial Maximum. This record marks the boost of this proxy as a kinematic circulation change proxy for the Atlantic Ocean and the initial rising slope on the ‘Elderfield-Curve’. However, the up-to-date data base of Atlantic sedimentary <sup>231</sup>Pa/<sup>230</sup>Th records gives a rather inconsistent picture of changes in the circulation strength in the Atlantic throughout the past 25 ka (Ng et al., 2018). Since both radioisotopes are strongly particle reactive it is obvious that scavenging processes may play a major role in their cycling as well. At ocean margins such processes do have a major impact on <sup>231</sup>Pa/<sup>230</sup>Th, leading to increased values and thus potentially overprinting the circulation signal. In contrast, records from open ocean sites are assumed to show a less biased circulation signal. In addition, the GEOTRACES program (Schlitzer et al., 2018) provided valuable seawater data allowing for examining the cycling of both radioisotopes under today’s circulation regime in more detail. A transect across the North Atlantic by Hayes et al. (2015) revealed that nepheloid layers contribute to strong bottom scavenging of <sup>231</sup>Pa and <sup>230</sup>Th in the northwestern Atlantic basin. Surprisingly, sedimentary core-top values do not mirror predominant scavenging effects but rather indicate a strong export of <sup>231</sup>Pa and therefore a circulation signal. With our modern proxy toolbox, it is impossible to reconstruct the occurrence and intensity of past nepheloid layers and hence their potential effect on recorded <sup>231</sup>Pa/<sup>230</sup>Th variations. Therefore, isotope-enabled models may help to better decipher the interwoven processes controlling <sup>231</sup>Pa/<sup>230</sup>Th (Rempfer et al., 2017; Lerner et al., 2019). Here an up-to-date compilation of northwestern Atlantic <sup>231</sup>Pa/<sup>230</sup>Th data will be presented. Our findings base on records covering the last 25 ka and will be interpreted in the context of recent model simulations as well as compared to seawater data. Thus, we aim for a deeper understanding of <sup>231</sup>Pa and <sup>230</sup>Th cycling in the northwestern Atlantic.</p><p>References:</p><p>Hayes, C., et al. (2015), Deep-Sea Res. Pt. II, 116, 29-41.<br>Lerner et al. (2020), Deep Sea. Res. Pt. I, 155, 1-41.<br>McManus, J. F., et al. (2004), Nature, 428, 834-837.<br>Ng, H., et al. (2018), Nat. Comm., 9, 1-10.<br>Rempfer et al. (2017), EPSL, 468, 27-37.<br>Schlitzer, R., et al. (2018), Chem. Geol., 493, 210-223.</p><p> </p>


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 221-234
Author(s):  
Ole Valk ◽  
Michiel M. Rutgers van der Loeff ◽  
Walter Geibert ◽  
Sandra Gdaniec ◽  
S. Bradley Moran ◽  
...  

Abstract. This study provides dissolved and particulate 230Th and 232Th results as well as particulate 234Th data collected during expeditions to the central Arctic Ocean (GEOTRACES, an international project to identify processes and quantify fluxes that control the distributions of trace elements; sections GN04 and GIPY11). Constructing a time series of dissolved 230Th from 1991 to 2015 enables the identification of processes that control the temporal development of 230Th distributions in the Amundsen Basin. After 2007, 230Th concentrations decreased significantly over the entire water column, particularly between 300 and 1500 m. This decrease is accompanied by a circulation change, evidenced by a concomitant increase in salinity. A potentially increased inflow of water of Atlantic origin with low dissolved 230Th concentrations leads to the observed depletion in dissolved 230Th in the central Arctic. Because atmospherically derived tracers (chlorofluorocarbon (CFC), sulfur hexafluoride (SF6)) do not reveal an increase in ventilation rate, it is suggested that these interior waters have undergone enhanced scavenging of Th during transit from Fram Strait and the Barents Sea to the central Amundsen Basin. The 230Th depletion propagates downward in the water column by settling particles and reversible scavenging.


Sign in / Sign up

Export Citation Format

Share Document