scholarly journals Supplementary material to "Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland ice sheet"

Author(s):  
Alison Delhasse ◽  
Xavier Fettweis ◽  
Christoph Kittel ◽  
Charles Amory ◽  
Cécile Agosta
2018 ◽  
Author(s):  
Alison Delhasse ◽  
Xavier Fettweis ◽  
Christoph Kittel ◽  
Charles Amory ◽  
Cécile Agosta

Abstract. Since the 2000's, a change in the atmospheric circulation over North Atlantic has favored warmer and sunnier weather conditions over the Greenland Ice sheet (GrIS) in summer enhancing the melt increase. This circulation change is not represented by General Circulation Models (GCMs) of the 5th Coupled Model Intercomparison Project (CMIP5) which do not predict any circulation change for the next century over the Atlantic. The goal of this study is to evaluate the impact of an atmospheric circulation change (as currently observed) in a warmer climate on future projections of the GrIS surface mass balance (SMB). We compare GrIS SMB estimates from the regional climate model MAR forced by warmer reanalysis (ERA-Interim with a temperature correction of +1 °C, +1.5 °C and +2 °C at the MAR lateral boundaries) over 1980–2016 to future projections of GrIS SMB from MAR simulations forced with three GCMs over a future period for which a similar temperature increase of +1 °C, +1.5 °C and +2 °C is projected by the GCMs in comparison to 1980–1999. Mean SMB anomalies produced with warmer reanalysis over the climatologically stable period 1980–1999 is similar to those produced with MAR forced with GCMs over future periods characterized by a similar warming over Greenland. However, over the two last decades (2000–2016) when a circulation change has been observed in summer, MAR forced with warmer reanalysis suggests that the SMB decrease could be amplified by a factor of two if such atmospheric conditions will persist compared to future projections forced by GCMs for the same temperature increase but without any circulation change.


2018 ◽  
Vol 12 (11) ◽  
pp. 3409-3418 ◽  
Author(s):  
Alison Delhasse ◽  
Xavier Fettweis ◽  
Christoph Kittel ◽  
Charles Amory ◽  
Cécile Agosta

Abstract. Since the 2000s, a change in the atmospheric circulation over the North Atlantic resulting in more frequent blocking events has favoured warmer and sunnier weather conditions over the Greenland Ice Sheet (GrIS) in summer, enhancing the melt increase. This circulation change is not represented by general circulation models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5), which do not predict any circulation change for the next century over the North Atlantic. The goal of this study is to evaluate the impact of an atmospheric circulation change (as currently observed) on projections of the future GrIS surface mass balance (SMB). We compare GrIS SMB estimates simulated by the regional climate model MAR forced by perturbed reanalysis (ERA-Interim with a temperature correction of +1, +1.5, and +2 ∘C at the MAR lateral boundaries) over 1980–2016 to projections of the future GrIS SMB from MAR simulations forced by three GCMs over selected periods for which a similar temperature increase of +1, +1.5, and +2 ∘C is projected by the GCMs in comparison to 1980–1999. Mean SMB anomalies produced with perturbed reanalysis over the climatologically stable period 1980–1999 are similar to those produced with MAR forced by GCMs over future periods characterised by a similar warming over Greenland. However, over the 2 last decades (2000–2016) when an increase in the frequency of blocking events has been observed in summer, MAR forced by perturbed reanalysis suggests that the SMB decrease could be amplified by a factor of 2 if such atmospheric conditions persist compared to projections forced by GCMs for the same temperature increase but without any circulation change.


2007 ◽  
Vol 1 (1) ◽  
pp. 21-40 ◽  
Author(s):  
X. Fettweis

Abstract. Results from a 28-year simulation (1979–2006) over the Greenland ice sheet (GrIS) reveal an increase of solid precipitation (+0.4±2.5 km3 yr−2) and run-off (+7.9±3.3 km3 yr−2) of surface meltwater. The net effect of these competing factors is a significant Surface Mass Balance (SMB) loss of −7.2±5.1 km3 yr−2. The contribution of changes in the net water vapour flux (+0.02±0.09 km3 yr−2) and rainfall (+0.2±0.2 km3 yr−2) to the SMB variability is negligible. The meltwater supply has increased because the GrIS surface has been warming up +2.4°C since 1979. Sensible heat flux, latent heat flux and net solar radiation have not varied significantly over the last three decades. However, the simulated downward infrared flux has increased by 9.3 W m−2 since 1979. The natural climate variability (e.g. the North Atlantic Oscillation) does not explain these changes. The recent global warming, due to the greenhouse gas concentration increase induced by human activities, could be a cause of these changes. The doubling of surface meltwater flux into the ocean over the period 1979–2006 suggests that the overall ice sheet mass balance has been increasingly negative, given the likely meltwater-induced acceleration of outlet glaciers. This study suggests that increased melting overshadows over an increased accumulation in a warming scenario and that the GrIS is likely to keep losing mass in the future. An enduring GrIS melting will probably affect in the future an certain effect on the stability of the thermohaline circulation and the global sea level rise.


2021 ◽  
Author(s):  
Heiko Goelzer ◽  

<p>The Greenland ice sheet (GrIS) is one of the largest contributors to global mean sea-level rise today and is expected to continue losing mass in the future under increasing Arctic warming. Mass loss in the future is caused by the thinning and retreat of marine-terminating outlet glaciers and to a larger extent by decreasing surface mass balance (SMB) due to increased surface meltwater runoff. In this paper we study the relative importance of changes in SMB and outlet glacier retreat by means of model simulations that have been performed as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). The effect of the two forcing mechanisms can be separated based on a comparison between full projections and single forcing experiments up to year 2100 for a number of ice sheet models, driving General Circulation Models and two forcing scenarios (RCP2.6 and RCP8.5). We can confirm earlier findings for the high forcing scenario that a compensation between the two processes renders the sea-level contribution from the full experiment lower than the sum of the single forcing experiments.</p>


2013 ◽  
Vol 35 (5) ◽  
pp. 1155-1174 ◽  
Author(s):  
J. H. van Angelen ◽  
M. R. van den Broeke ◽  
B. Wouters ◽  
J. T. M. Lenaerts

2018 ◽  
Vol 12 (10) ◽  
pp. 3097-3121 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961–1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation–surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation–surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


Sign in / Sign up

Export Citation Format

Share Document