Supplementary material to "Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow"

Author(s):  
Kévin Fourteau ◽  
Florent Domine ◽  
Pascal Hagenmuller
2020 ◽  
Author(s):  
Kévin Fourteau ◽  
Florent Domine ◽  
Pascal Hagenmuller

Abstract. Heat transport in snowpacks is generally thought to occur through two independent processes: heat conduction and latent heat transport carried by water vapor. This paper investigates the coupling between both these processes in snow, with an emphasis on the impacts of the kinetics of the sublimation and deposition of water vapor onto ice. In the case where kinetics is fast, latent heat exchanges at ice surfaces modify their temperature, and therefore the thermal gradient within ice crystals and the heat conduction through the entire microstructure. Furthermore, in this case, the effective thermal conductivity of snow can be expressed by a purely conductive term complemented by a term directly proportional to the effective diffusion coefficient of water vapor in snow, which illustrates the inextricable coupling between heat conduction and water vapor transport. Numerical simulations on measured three-dimensional snow microstructures reveal that the effective thermal conductivity of snow can be significantly larger, up to about 50 % for low-density snow, than if water vapor transport is neglected. Comparison of our numerical simulations with literature data suggests that the fast kinetics hypothesis could be a reasonable assumption to model snow physical properties. Lastly, we demonstrate that under the fast kinetics hypothesis the effective diffusion coefficient of water vapor is related to the effective thermal conductivity by a simple linear relationship. Under such condition, the effective diffusion coefficient of water vapor is expected to lie in the narrow 100 % to about 80 % range of the value of the diffusion coefficient of water vapor in air for most seasonal snows. This may greatly facilitate the parameterization of water vapor diffusion of snow in models.


2021 ◽  
Vol 15 (6) ◽  
pp. 2739-2755
Author(s):  
Kévin Fourteau ◽  
Florent Domine ◽  
Pascal Hagenmuller

Abstract. Heat transport in snowpacks is understood to occur through the two processes of heat conduction and latent heat transport carried by water vapor, which are generally treated as decoupled from one another. This paper investigates the coupling between both these processes in snow, with an emphasis on the impacts of the kinetics of the sublimation and deposition of water vapor onto ice. In the case when kinetics is fast, latent heat exchanges at ice surfaces modify their temperature and therefore the thermal gradient within ice crystals and the heat conduction through the entire microstructure. Furthermore, in this case, the effective thermal conductivity of snow can be expressed by a purely conductive term complemented by a term directly proportional to the effective diffusion coefficient of water vapor in snow, which illustrates the inextricable coupling between heat conduction and water vapor transport. Numerical simulations on measured three-dimensional snow microstructures reveal that the effective thermal conductivity of snow can be significantly larger, by up to about 50 % for low-density snow, than if water vapor transport is neglected. A comparison of our numerical simulations with literature data suggests that the fast kinetics hypothesis could be a reasonable assumption for modeling heat and mass transport in snow. Lastly, we demonstrate that under the fast kinetics hypothesis the effective diffusion coefficient of water vapor is related to the effective thermal conductivity by a simple linear relationship. Under such a condition, the effective diffusion coefficient of water vapor is expected to lie in the narrow 100 % to about 80 % range of the value of the diffusion coefficient of water vapor in air for most seasonal snows. This may greatly facilitate the parameterization of water vapor diffusion of snow in models.


2013 ◽  
Vol 34 (3) ◽  
pp. 412-423 ◽  
Author(s):  
Janez Šetina ◽  
Makfir Sefa ◽  
Bojan Erjavec ◽  
Domen Hudoklin

2014 ◽  
Vol 1035 ◽  
pp. 77-82 ◽  
Author(s):  
Eva Vejmelková ◽  
Monika Čáchová ◽  
Dana Koňáková ◽  
Pavel Reiterman ◽  
Robert Černý

Waste materials are utilized with an increasing frequency in the building industry, during the last decades. The motivation is both environmental and economical. In this paper, waste ceramic powder produced at the grinding of hollow brick blocks used in precise-walling technologies, is applied as a partial replacement of siliceous aggregates of lime plasters. The designed plaster mixes are analyzed from the point of view of their basic physical, mechanical, hygric and thermal properties. The bulk density, matrix density, open porosity, compressive strength, bending strength, water vapor diffusion permeability, water vapor diffusion coefficient, water vapor diffusion resistance factor, thermal conductivity and specific heat capacity are the investigated parameters. A reference lime plaster is analyzed as well, for the sake of comparison. Experimental results show a remarkable enhancement of mechanical properties of the plasters with the increasing dosage of ceramic powder. Moreover, the thermal insulation properties are improved and the water vapor diffusion capability of the plasters with ceramic powder increases.


2012 ◽  
Vol 14 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Hadi Gholamiyan ◽  
Asghar Tarmian ◽  
Kazem Doost Hosseini ◽  
Mohammad Azadfallah

Sign in / Sign up

Export Citation Format

Share Document