scholarly journals Answers to Anonymous Referee 2 on the paper 'Does the rotational direction of a wind turbine impact the wake in a stably stratified atmospheric boundary layer?'

2019 ◽  
Author(s):  
Antonia Englberger
2020 ◽  
Author(s):  
Antonia Englberger ◽  
Andreas Dörnbrack ◽  
Julie Lundquist

<p>Wind turbines operating in a stably stratified atmospheric boundary layer often interact with a veering wind, which is characterized by a clockwise wind direction change with height in the Northern Hemisphere. The rotational direction of the wind turbine rotor has a significant impact on the flow field in the wake in case of a veering wind, whereas it is of minor importance if the wind direction is the same over the whole rotor.</p><p>The impact of the rotational direction in a stably stratified atmospheric boundary layer results in contrasting rotational directions of the near and far wake in case of a common clockwise rotating rotor, whereas in case of a counterclockwise rotating rotor the rotational direction of the wake persists in the whole wake. The change of the rotational direction of the wake at a downstream location, which is related to the transition from the near wake to the far wake region, results in a larger streamwise wake elongation and a narrower spanwise wake width. In the lower and upper part, the wake deflection angle is also influenced by the rotational direction of the blades, resulting in a smaller wake deflection angle in case of a common clockwise rotating rotor in the Northern Hemisphere. In the Southern Hemisphere, the situation is reversed, an effect related to the Coriolis force impact on the Ekman spiral.</p><p>As the rotational direction impacts the inflow velocity, it effects the produced power of a downwind turbine and likewise the loads acting on a downwind turbine. For a hypothetical downwind turbine with a staggered spacing of 7 D, the power output difference would be up to 23% in idealized simulations, whereas the power output difference for a counterclockwise rotating rotor instead of a clockwise one also depends on atmospheric conditions like the strength of stratification, the strength of the veering wind, the rotor fraction impacted by a veering wind, and wind speed.</p>


Author(s):  
Dezhi Wei ◽  
Decheng Wan

Abstract Turbine-wake interactions among wind turbine array significantly affect the efficiency of wind farms. Yaw angle control is one of the potential ways to increase the total power generation of wind plants, but the sensitivity of such control strategy to atmospheric stability is rarely studied. In the present work, large-eddy simulation of a two-turbine configuration under convective atmospheric boundary layer is performed, with different yaw angles for the front one, the effect of turbine induced forces on the flow field is modeled by actuator line. Emphasis is placed on wake characteristics and aerodynamic performance. Simulation results reveal that atmospheric stability has a considerable impact on the behavior of wind turbine, wake deflection on the horizontal hub height plane for yawed wind turbine is relatively small, compared with the result of the empirical wake model proposed for wind turbine operating in the neutral stratification, which is attributed to the higher ambient turbulence intensity and large variance of wind direction in the convective condition. And associated with the smaller wake deflection, the total power production does not increase as expected when yawing the upstream turbine. In addition, due to the existence of great quantities of disorganized coherent turbulent structures in the unstable condition, the yaw bearing moment experienced by the downstream wind turbine increases dramatically, even if the rotor plane of the first turbine is perpendicular to the inflow direction.


Sign in / Sign up

Export Citation Format

Share Document