scholarly journals Model Penentuan Rute Terpendek Penjemputan Sampah Menggunakan Metode MTSP dan Algoritma Genetika

2021 ◽  
Vol 2 (1) ◽  
pp. 43-48
Author(s):  
Aswandi ◽  
Sugiarto Cokrowibowo ◽  
Arnita Irianti

Garbage pick-ups performed by two or more people must have a route in their pickup. However, it is not easy to model the route of the pickup that each point must be passed and each point is only passed once. Now, the method to create a route has been done a lot, one of the most commonly used methods is the creation of routes using the Traveling Salesman Problem method. Traveling Salesman Problem is a method to determine the route of a series of cities where each city is only traversed once. In this study, the shortest route modeling was conducted using Multiple Traveling Salesman Problem and Genetic Algorithm to find out the shortest route model that can be passed in garbage pickup. In this study, datasets will be used as pick-up points to then be programmed to model the shortest routes that can be traveled. The application of Multiple Traveling Salesman Problem method using Genetic Algorithm shows success to model garbage pickup route based on existing dataset, by setting the parameters of 100 generations and 100 population and 4 salesmen obtained 90% of the best individual opportunities obtained with the best individual fitness value of 0.05209. The test was conducted using BlackBox testing and the results of this test that the functionality on the system is 100% appropriate.

2021 ◽  
Vol 16 (2) ◽  
pp. 173-184
Author(s):  
Y.D. Wang ◽  
X.C. Lu ◽  
J.R. Shen

The multiple traveling salesman problem (mTSP) is an extension of the traveling salesman problem (TSP), which has wider applications in real life than the traveling salesman problem such as transportation and delivery, task allocation, etc. In this paper, an improved genetic algorithm (VNS-GA) that uses polar coordinate classification to generate the initial solutions is proposed. It integrates the variable neighbourhood algorithm to solve the multiple objective optimization of the mTSP with workload balance. Aiming to workload balance, the first design of this paper is about generating initial solutions based on the polar coordinate classification. Then a distance comparison insertion operator is designed as a neighbourhood action for allocating paths in a targeted manner. Finally, the neighbourhood descent process in the variable neighbourhood algorithm is fused into the genetic algorithm for the expansion of search space. The improved algorithm is tested on the TSPLIB standard data set and compared with other genetic algorithms. The results show that the improved genetic algorithm can increase computational efficiency and obtain a better solution for workload balance and this algorithm has wild applications in real life such as multiple robots task allocation, school bus routing problem and other optimization problems.


2017 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
NI KADEK MAYULIANA ◽  
EKA N. KENCANA ◽  
LUH PUTU IDA HARINI

Genetic algorithm is a part of heuristic algorithm which can be applied to solve various computational problems. This work is directed to study the performance of the genetic algorithm (GA) to solve Multi Traveling Salesmen Problem (multi-TSP). GA is simulated to determine the shortest route for 5 to 10 salesmen who travelled 10 to 30 cities. The performance of this algorithm is studied based on the minimum distance and the processing time required for 10 repetitions for each of cities-salesmen combination. The result showed that the minimum distance and the processing time of the GA increase consistently whenever the number of cities to visit increase. In addition, different number of sales who visited certain number of cities proved significantly affect the running time of GA, but did not prove significantly affect the minimum distance.


2020 ◽  
Vol 11 (3) ◽  
pp. 79-91
Author(s):  
Azcarie Manuel Cabrera Cuevas ◽  
Jania Astrid Saucedo Martínez ◽  
José Antonio Marmolejo Saucedo

The variation of the traveling salesman problem (TSP) with multiple salesmen (m-TSP) has been studied for many years resulting in diverse solution methods, both exact and heuristic. However, the high difficulty level on finding optimal (or acceptable) solutions has opposed the many efforts of doing so. The proposed method regards a two stage procedure which implies a modified version of the p-Median Problem (PMP) alongside the TSP, making a partition of the nodes into subsets that will be assigned to each salesman, solving it with Branch & Cut (B&C), in the first stage. This is followed by the routing, applying an Ant Colony Optimization (ACO) metaheuristic algorithm to solve a TSP for each subset of nodes. A case study was reviewed, detailing the positioning of five vehicles in strategic places in the Mexican Republic.


Sign in / Sign up

Export Citation Format

Share Document