scholarly journals PERANCANGAN AWAL FLIGHT TEST INSTRUMENTATION (FTI) UNTUK PESAWAT TERBANG TANPA AWAK DI PUSTEKBANG LAPAN

Technologic ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Try K. W ◽  
Fuad S. P. ◽  
Gunta A.

Abstrak--Pesawat terbang tanpa awak (PTTA) yang dikembangkan oleh LAPAN memiliki maximum takeoff weight (MTOW) yang bervariasi. PTTA ini memiliki sistem kendali (SK) yang menjadikannya dapat terbang secara auotonomous. Salah satu sub sistem inti yang ada di dalam SK adalah flight control law (FCL), dimana pengembangannya dimulai dari tahap penentuan requirement dilanjutkan dengan tahap desain SK. Dalam desain SK, tahapan metode yang digunakan adalah software in the loop simulation, hardware in the loop simulation dan uji terbang. Untuk mengetahui apakah FCL yang dikembangkan telah memenuhi requirement awal yang didefinisikan, perlu sebuah alat yang mampu merekam parameter-parameter penting selama uji terbang, yang dinamakan dengan flight test instrumentation (FTI). Pada penelitian ini, akan dibahas mengenai requirement awal yang harus dipenuhi oleh FTI, mulai dari dimensi, berat, jumlah parameter yang direkam, serta kemampuan hardware & sensor. Tahapan selanjutnya adalah melakukan market study pemilihan hardware dengan metode pembobotan dan diakhiri dengan desain arsitektur serta wiring diagram FTI. Dari hasil penelitian yang dilakukan, diperoleh desain awal FTI yang memiliki berat total kurang dari 1.5Kg dan dimensi yang bisa dimasukkan ke dalam PTTA dengan MTOW 10Kg. FTI ini juga dilengkapi dengan baterai dan sensor yang independen, sehingga tidak tergantung dan membebani system elektronik yang terdapat pada PTTA Kata Kunci : FTI, Identifikasi Parameter, PTTA

2013 ◽  
Vol 58 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Christina M. Ivler ◽  
Mark B. Tischler

Flight control design and analysis requires an accurate flight dynamics model of the bare airframe and its associated uncertainties, as well as the integrated system model (block diagrams), across the frequency range of interest. Frequency response system identification methods have proven to efficiently fulfill these modeling requirements in recent rotorcraft flight control applications. This paper presents integrated system identification methods for control law design with flight-test examples of the Fire Scout MQ-8B, S-76, and ARH-70A. The paper also looks toward how system identification could be used in new modeling challenges such as large tilt-rotors and uniquely configured unmanned aircraft.


2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
Min Huang ◽  
Zhong-wei Wang

Wind tunnel based Virtual Flight Testing (VFT) is a dynamic wind tunnel test for evaluating flight control systems (FCS) proposed in recent decades. It integrates aerodynamics, flight dynamics, and FCS as a whole and is a more realistic and reliable method for FCS evaluation than traditional ground evaluation methods, such as Hardware-in-the-Loop Simulation (HILS). With FCS evaluated by VFT before flight test, the risk of flight test will be further reduced. In this paper, the background, progress, and prospects of VFT are systematically summarized. Specifically, the differences among VFT, traditional dynamic wind tunnel methods, and traditional FCS evaluation methods are introduced in order to address the advantages of evaluating FCS with VFT. Secondly, the progress of VFT is reviewed in detail. Then, the test system and key technologies of VFT for FCS evaluation are analyzed. Lastly, the prospects of VFT for evaluating FCS are described.


2021 ◽  
pp. 1-27
Author(s):  
D. Sartori ◽  
F. Quagliotti ◽  
M.J. Rutherford ◽  
K.P. Valavanis

Abstract Backstepping represents a promising control law for fixed-wing Unmanned Aerial Vehicles (UAVs). Its non-linearity and its adaptation capabilities guarantee adequate control performance over the whole flight envelope, even when the aircraft model is affected by parametric uncertainties. In the literature, several works apply backstepping controllers to various aspects of fixed-wing UAV flight. Unfortunately, many of them have not been implemented in a real-time controller, and only few attempt simultaneous longitudinal and lateral–directional aircraft control. In this paper, an existing backstepping approach able to control longitudinal and lateral–directional motions is adapted for the definition of a control strategy suitable for small UAV autopilots. Rapidly changing inner-loop variables are controlled with non-adaptive backstepping, while slower outer loop navigation variables are Proportional–Integral–Derivative (PID) controlled. The controller is evaluated through numerical simulations for two very diverse fixed-wing aircraft performing complex manoeuvres. The controller behaviour with model parametric uncertainties or in presence of noise is also tested. The performance results of a real-time implementation on a microcontroller are evaluated through hardware-in-the-loop simulation.


1999 ◽  
Vol 3 (3) ◽  
pp. 111-113
Author(s):  
Georg Grübel ◽  
Jean-François Magni

Sign in / Sign up

Export Citation Format

Share Document