Randomly Branched Polymers. II. Computer Analysis of Gel-Permeation Chromatograms

1976 ◽  
Vol 49 (5) ◽  
pp. 1290-1304
Author(s):  
M. Kurata ◽  
H. Okamoto ◽  
M. Iwama ◽  
M. Abe ◽  
T. Homma

Abstract An iterative computer method was proposed for estimating the degree of branching and molecular weight distribution simultaneously from a pair of measurements on intrinsic viscosity and gel-permeation chromatography. The validity of the method as applied to randomly branched polymers was tested by using both fractionated and unfractionated samples of branched polystyrenes. It was experimentally concluded that the average number of branch points per unit molecular weight, λ, can be determined by this method with an accuracy of about 15%, and the weight-average molecular weight with accuracy of about 10%.

2021 ◽  
Vol 50 (6) ◽  
pp. 1767-1773
Author(s):  
Manjusha Elizabeth Mathew ◽  
Ishak Ahmad ◽  
Sabu Thomas ◽  
Muhammad Kassim ◽  
Rusli Daik

Polyvinyl benzyl chloride (PVBC) was synthesized by free radical polymerization of 4-vinylbenzyl chloride using benzoyl peroxide initiator at 60 °C. PVBC was synthesised in different solvents such as toluene, xylene, 1,4-dioxane, and tetrahydrofuran. The polymers were structurally characterized by 1H NMR and FTIR spectroscopic techniques. The thermal property of the polymer was investigated by thermogravimetric analysis (TGA) and differential thermogravimetric analysis (DTA).The number average molecular weight, weight average molecular weight and polydispersity index of PVBC synthesised in different solvents were determined and compared by gel permeation chromatography technique.


BioResources ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. 4137-4151 ◽  
Author(s):  
Aikfei Ang ◽  
Zaidon Ashaari ◽  
Edi Suhaimi Bakar ◽  
Nor Azowa Ibrahim

An alkali lignin (OL) with a weight-average molecular weight (Mw) of 11646 g/mol was used to prepare low-molecular weight lignin for resin synthesis. The low-molecular weight lignin feedstock was obtained via base-catalysed depolymerisation (BCD) treatments at different combined severity factors. Sequential fractionation of the OL and BCD-treated lignins using organic solvents with different Hildebrand solubility parameters were used to alter the homogeneity of the OL. The yield and properties of OL itself and OL and BCD-treated OL dissolved in propan-1-ol (F1), ethanol (F2), and methanol (F3) were determined. Regardless of the treatment applied, a small amount of OL was dissolved in F1 and F2. The BCD treatment did not increase the yield of F1 but did increase the yields of F2 and F3. Gel permeation chromatography (GPC) showed that the repolymerization reaction occurred in F3 for all BCD-treated OL, so these lignins were not suitable for use as feedstocks for resin production. The GPC, 13Carbon-nuclear magnetic resonance, and Fourier transform infrared spectroscopy analyses confirmed that the F3 in OL exhibited the optimum yield, molecular weight distribution, and chemical structure suitable for use as feedstocks for resin synthesis.


Sign in / Sign up

Export Citation Format

Share Document