scholarly journals Correlation of SOD and MDA Expression in the Organ of Corti and Changes in the Function of Outer Hair Cells Measured by DPOAE Examination in Noise-Exposed Rat Cochlea

2021 ◽  
Vol 10 (1) ◽  
pp. 41-49
Author(s):  
Reastuty Reastuty ◽  
Siti Hajar Haryuna ◽  
◽  
1999 ◽  
Vol 27 (2) ◽  
pp. 73-77 ◽  
Author(s):  
Miguel A. Lopez-Gonzalez ◽  
Juan M. Guerrero ◽  
Francisco Rojas ◽  
Carmen Osuna ◽  
Francisco Delgado

ORL ◽  
1988 ◽  
Vol 50 (6) ◽  
pp. 363-370 ◽  
Author(s):  
Joseph B. Nadol, Jr.

1978 ◽  
Vol 26 (4) ◽  
pp. 313-317 ◽  
Author(s):  
T Omata ◽  
I Ohtani ◽  
K Ohtsuki ◽  
J Ouchi

A method for the detection of lactic dehydrogenase enzymatic activity in outer hair cells of the rabbit is described. The membranous labyrinth with temporal bone was prefixed in glutaraldehyde. After being placed into the incubation medium, it was postfixed in osmium tetroxide. Specimens of the organ of Corti were removed. Then the specimens were embedded in water-soluble glycol and cut with a cryostat for light microscopy, and also they were embedded in Epon and cut for light and electron microscopy. Sectioning of the membranous labyrinth was very easily made when the specimens were embedded in both the water-soluble glycol and the Epon. The structures of the frozen sections as well as the Epon-embedded ones were well preserved. In the frozen sections the preservation and localization of reaction products were thoroughly kept, but monoformazan of the Epon-embedded sections was soluble.


1990 ◽  
Vol 43 (2-3) ◽  
pp. 219-230 ◽  
Author(s):  
Günter Reuter ◽  
Hans-Peter Zenner

1998 ◽  
Vol 46 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Nobuki Sakaguchi ◽  
Michael T. Henzl ◽  
Isolde Thalmann ◽  
Ruediger Thalmann ◽  
Bradley A. Schulte

Oncomodulin (OM) is a small, acidic calcium-binding protein first discovered in a rat hepatoma and later found in placental cytotrophoblasts, the pre-implantation embryo, and in a wide variety of neoplastic tissues. OM was considered to be exclusively an oncofetal protein until its recent detection in extracts of the adult guinea pig's organ of Corti. Here we report that light and electron microscopic immunostaining of gerbil, rat, and mouse inner ears with a monoclonal antibody against recombinant rat OM localizes the protein exclusively in cochlear outer hair cells (OHCs). At the ultrastructural level, high gold labeling density was seen overlying the nucleus, cytoplasm, and the cuticular plate of gerbil OHCs. Few, if any, gold particles were present over intracellular organelles and the stereocilia. Staining of a wide range of similarly processed gerbil organs failed to detect immunoreactive OM in any other adult tissues. The mammalian genome encodes one α- and one β-isoform of parvalbumin (PV). The widely distributed α PV exhibits a very high affinity for Ca2+ and is believed to serve as a Ca2+ buffer. By contrast, OM, the mammalian β PV, displays a highly attenuated affinity for Ca2+, consistent with a Ca2+-dependent regulatory function. The exclusive association of OM with cochlear OHCs in mature tissues is likely to have functional relevance. Teleological considerations favor its involvement in regulating some aspect of OHC electromotility. Although the fast electromotile response of OHCs does not require Ca2+, its gain and magnitude are modulated by efferent innervation. Therefore, OM may be involved in mediation of intracellular responses to cholinergic stimulation, which are known to be Ca2+ regulated.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Sung-Ho Huh ◽  
Mark E Warchol ◽  
David M Ornitz

The sensory and supporting cells (SCs) of the organ of Corti are derived from a limited number of progenitors. The mechanisms that regulate the number of sensory progenitors are not known. Here, we show that Fibroblast Growth Factors (FGF) 9 and 20, which are expressed in the non-sensory (Fgf9) and sensory (Fgf20) epithelium during otic development, regulate the number of cochlear progenitors. We further demonstrate that Fgf receptor (Fgfr) 1 signaling within the developing sensory epithelium is required for the differentiation of outer hair cells and SCs, while mesenchymal FGFRs regulate the size of the sensory progenitor population and the overall cochlear length. In addition, ectopic FGFR activation in mesenchyme was sufficient to increase sensory progenitor proliferation and cochlear length. These data define a feedback mechanism, originating from epithelial FGF ligands and mediated through periotic mesenchyme that controls the number of sensory progenitors and the length of the cochlea.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Paola Perin ◽  
Simona Tritto ◽  
Laura Botta ◽  
Jacopo Maria Fontana ◽  
Giulia Gastaldi ◽  
...  

We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.


2008 ◽  
Vol 99 (4) ◽  
pp. 1607-1615 ◽  
Author(s):  
Markus Drexl ◽  
Marcia M. Mellado Lagarde ◽  
Jian Zuo ◽  
Andrei N. Lukashkin ◽  
Ian J. Russell

Electrically evoked otoacoustic emissions are sounds emitted from the inner ear when alternating current is injected into the cochlea. Their temporal structure consists of short- and long-delay components and they have been attributed to the motile responses of the sensory-motor outer hair cells of the cochlea. The nature of these motile responses is unresolved and may depend on either somatic motility, hair bundle motility, or both. The short-delay component persists after almost complete elimination of outer hair cells. Outer hair cells are thus not the sole generators of electrically evoked otoacoustic emissions. We used prestin knockout mice, in which the motor protein prestin is absent from the lateral walls of outer hair cells, and Tecta ΔENT/ΔENT mice, in which the tectorial membrane, a structure with which the hair bundles of outer hair cells normally interact, is vestigial and completely detached from the organ of Corti. The amplitudes and delay spectra of electrically evoked otoacoustic emissions from Tecta ΔENT/ΔENT and Tecta +/+ mice are very similar. In comparison with prestin +/+ mice, however, the short-delay component of the emission in prestin −/− mice is dramatically reduced and the long-delay component is completely absent. Emissions are completely suppressed in wild-type and Tecta ΔENT/ΔENT mice at low stimulus levels, when prestin-based motility is blocked by salicylate. We conclude that near threshold, the emissions are generated by prestin-based somatic motility.


Sign in / Sign up

Export Citation Format

Share Document