On δ- Lorentzian trans Sasakian manifold with semi-symmetric metric connection
The aim of the present research is to study the δ-Lorentzian trans Sasakian manifolds with a semi-symmetric metric connection. We have found the expressions for curvature tensors, Ricci curvature tensors and scalar curvature of the δ-Lorentzian trans Sasakian manifolds with a semi-symmetric metric and metric connection. Also, we have discussed some results on quasi-projectively flat and ϕ-projectively flat manifolds endowed with a semi-symmetric-metric connection. It shown that the manifold satisfying¯R. ¯ S = 0,¯P, ¯ S = 0.Lastly, we have obtained the conditions for the δ-Lorentzian Trans Sasakian manifolds with a semi-symmetric metric connection to be conformally flat and ξ-conformally flat.