scholarly journals The stable subgroup graph

2018 ◽  
Vol 36 (3) ◽  
pp. 129-139
Author(s):  
Behnaz Tolue

In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1)\cap H_2\neq 1$ or $St_{G}(H_2)\cap H_1\neq 1$. Its planarity is discussed whenever $G$ is an abelian group, $p$-group, nilpotent, supersoluble or soluble group. Finally, the induced subgraph of stable subgroup graph with vertex set whole non-normal subgroups is considered and its planarity is verified for some certain groups.

2019 ◽  
Vol 12 (05) ◽  
pp. 1950081
Author(s):  
M. Jahandideh ◽  
R. Modabernia ◽  
S. Shokrolahi

Let [Formula: see text] be a non-abelian finite group and [Formula: see text] be the center of [Formula: see text]. The non-commuting graph, [Formula: see text], associated to [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices [Formula: see text] are adjacent if and only if [Formula: see text]. We conjecture that if [Formula: see text] is an almost simple group and [Formula: see text] is a non-abelian finite group such that [Formula: see text], then [Formula: see text]. Among other results, we prove that if [Formula: see text] is a certain almost simple group and [Formula: see text] is a non-abelian group with isomorphic non-commuting graphs, then [Formula: see text].


1974 ◽  
Vol 17 (3) ◽  
pp. 305-318 ◽  
Author(s):  
H. Heineken ◽  
J. S. Wilson

It was shown by Baer in [1] that every soluble group satisfying Min-n, the minimal condition for normal subgroups, is a torsion group. Examples of non-soluble locally soluble groups satisfying Min-n have been known for some time (see McLain [2]), and these examples too are periodic. This raises the question whether all locally soluble groups with Min-n are torsion groups. We prove here that this is not the case, by establishing the existence of non-trivial locally soluble torsion-free groups satisfying Min-n. Rather than exhibiting one such group G, we give a general method for constructing examples; the reader will then be able to see that a variety of additional conditions may be imposed on G. It will follow, for instance, that G may be a Hopf group whose normal subgroups are linearly ordered by inclusion and are all complemented in G; further, that the countable groups G with these properties fall into exactly isomorphism classes. Again, there are exactly isomorphism classes of countable groups G which have hypercentral nonnilpotent Hirsch-Plotkin radical, and which at the same time are isomorphic to all their non-trivial homomorphic images.


10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


Author(s):  
Amit Sharma ◽  
P. Venkata Subba Reddy

For a simple, undirected graph [Formula: see text], a function [Formula: see text] which satisfies the following conditions is called an outer-independent total Roman dominating function (OITRDF) of [Formula: see text] with weight [Formula: see text]. (C1) For all [Formula: see text] with [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], (C2) The induced subgraph with vertex set [Formula: see text] has no isolated vertices and (C3) The induced subgraph with vertex set [Formula: see text] is independent. For a graph [Formula: see text], the smallest possible weight of an OITRDF of [Formula: see text] which is denoted by [Formula: see text], is known as the outer-independent total Roman domination number of [Formula: see text]. The problem of determining [Formula: see text] of a graph [Formula: see text] is called minimum outer-independent total Roman domination problem (MOITRDP). In this article, we show that the problem of deciding if [Formula: see text] has an OITRDF of weight at most [Formula: see text] for bipartite graphs and split graphs, a subclass of chordal graphs is NP-complete. We also show that MOITRDP is linear time solvable for connected threshold graphs and bounded treewidth graphs. Finally, we show that the domination and outer-independent total Roman domination problems are not equivalent in computational complexity aspects.


2013 ◽  
Vol 05 (03) ◽  
pp. 1350012 ◽  
Author(s):  
N. SRIDHARAN ◽  
S. AMUTHA ◽  
S. B. RAO

Let G be a graph. The gamma graph of G denoted by γ ⋅ G is the graph with vertex set V(γ ⋅ G) as the set of all γ-sets of G and two vertices D and S of γ ⋅ G are adjacent if and only if |D ∩ S| = γ(G) – 1. A graph H is said to be a γ-graph if there exists a graph G such that γ ⋅ G is isomorphic to H. In this paper, we show that every induced subgraph of a γ-graph is also a γ-graph. Furthermore, if we prove that H is a γ-graph, then there exists a sequence {Gn} of non-isomorphic graphs such that H = γ ⋅ Gn for every n.


2016 ◽  
Vol 95 (1) ◽  
pp. 38-47 ◽  
Author(s):  
FRANCESCO DE GIOVANNI ◽  
MARCO TROMBETTI

A group $G$ is said to have the $T$-property (or to be a $T$-group) if all its subnormal subgroups are normal, that is, if normality in $G$ is a transitive relation. The aim of this paper is to investigate the behaviour of uncountable groups of cardinality $\aleph$ whose proper subgroups of cardinality $\aleph$ have a transitive normality relation. It is proved that such a group $G$ is a $T$-group (and all its subgroups have the same property) provided that $G$ has an ascending subnormal series with abelian factors. Moreover, it is shown that if $G$ is an uncountable soluble group of cardinality $\aleph$ whose proper normal subgroups of cardinality $\aleph$ have the $T$-property, then every subnormal subgroup of $G$ has only finitely many conjugates.


2011 ◽  
Vol 18 (02) ◽  
pp. 327-332 ◽  
Author(s):  
Lingli Wang ◽  
Wujie Shi

For a non-abelian group G, we associate the non-commuting graph ∇ (G) whose vertex set is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. In this paper, we prove that Aut (J2) and Aut (McL) are characterized by their non-commuting graphs.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350064 ◽  
Author(s):  
M. AKBARI ◽  
A. R. MOGHADDAMFAR

We consider the non-commuting graph ∇(G) of a non-abelian finite group G; its vertex set is G\Z(G), the set of non-central elements of G, and two distinct vertices x and y are joined by an edge if [x, y] ≠ 1. We determine the structure of any finite non-abelian group G (up to isomorphism) for which ∇(G) is a complete multipartite graph (see Propositions 3 and 4). It is also shown that a non-commuting graph is a strongly regular graph if and only if it is a complete multipartite graph. Finally, it is proved that there is no non-abelian group whose non-commuting graph is self-complementary and n-cube.


2017 ◽  
Vol 3 (1) ◽  
pp. 1-4
Author(s):  
Abdussakir Abdussakir

Commuting graph C(G) of a non-Abelian group G is a graph that contains all elements of G as its vertex set and two distinct vertices in C(G) will be adjacent if they are commute in G. In this paper we discuss commuting graph of dihedral group D2n. We show radius, diameter, cycle multiplicity, and metric dimension of this commuting graph in several theorems with their proof.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3147
Author(s):  
Monalisha Sharma ◽  
Rajat Kanti Nath ◽  
Yilun Shang

Let H be a subgroup of a finite non-abelian group G and g∈G. Let Z(H,G)={x∈H:xy=yx,∀y∈G}. We introduce the graph ΔH,Gg whose vertex set is G\Z(H,G) and two distinct vertices x and y are adjacent if x∈H or y∈H and [x,y]≠g,g−1, where [x,y]=x−1y−1xy. In this paper, we determine whether ΔH,Gg is a tree among other results. We also discuss about its diameter and connectivity with special attention to the dihedral groups.


Sign in / Sign up

Export Citation Format

Share Document