scholarly journals A short note on hyper Zagreb index

2017 ◽  
Vol 37 (2) ◽  
pp. 51-58
Author(s):  
Suresh Elumalai ◽  
Toufik Mansour ◽  
Mohammad Ali Rostami ◽  
Gnanadhass Britto Antony Xavier

In this paper, we present and analyze the upper and lower bounds on the Hyper Zagreb index $\chi^2(G)$ of graph $G$ in terms of the number of vertices $(n)$, number of edges $(m)$, maximum degree $(\Delta)$, minimum degree $(\delta)$ and the inverse degree $(ID(G))$. In addition, we give a counter example on the upper bound  of the second Zagreb index for Theorems 2.2 and  2.4 from \cite{ranjini}. Finally, we present lower and upper bounds on $\chi^2(G)+\chi^2(\overline G)$, where $\overline G$ denotes the complement of $G$.

Author(s):  
Amitav Doley ◽  
Jibonjyoti Buragohain ◽  
A. Bharali

The inverse sum indeg (ISI) index of a graph G is defined as the sum of the weights dG(u)dG(v)/dG(u)+dG(v) of all edges uv in G, where dG(u) is the degree of the vertex u in G. This index is found to be a significant predictor of total surface area of octane isomers. In this chapter, the authors present some lower and upper bounds for ISI index of subdivision graphs, t-subdivision graphs, s-sum and st -sum of graphs in terms of some graph parameters such as order, size, maximum degree, minimum degree, and the first Zagreb index. The extremal graphs are also characterized for their sharpness.


Author(s):  
Selvaraj Balachandran ◽  
Suresh Elumalai ◽  
Toufik Mansour

The inverse sum indeg index of a graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the degree of the vertex [Formula: see text]. In a recent paper, Pattabiraman [Inverse sum indeg index of graphs, AKCE Int. J. Graphs Combinat. 15(2) (2018) 155–167] gave some lower and upper bounds on [Formula: see text] index of all connected graphs in terms of Harmonic index, second Zagreb index and hyper Zagreb index. But some results were erroneous. In this note, we have corrected these results.


Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2111-2120 ◽  
Author(s):  
Kinkar Das ◽  
Kexiang Xu ◽  
Jinlan Wang

Let G=(V,E) be a simple graph of order n and size m with maximum degree ? and minimum degree ?. The inverse degree of a graph G with no isolated vertices is defined as ID(G) = ?n,i=1 1/di, where di is the degree of the vertex vi?V(G). In this paper, we obtain several lower and upper bounds on ID(G) of graph G and characterize graphs for which these bounds are best possible. Moreover, we compare inverse degree ID(G) with topological indices (GA1-index, ABC-index, Kf-index) of graphs.


2022 ◽  
Vol 2022 ◽  
pp. 1-4
Author(s):  
Muhammad Kamran Jamil ◽  
Aisha Javed ◽  
Ebenezer Bonyah ◽  
Iqra Zaman

The first general Zagreb index M γ G or zeroth-order general Randić index of a graph G is defined as M γ G = ∑ v ∈ V d v γ where γ is any nonzero real number, d v is the degree of the vertex v and γ = 2 gives the classical first Zagreb index. The researchers investigated some sharp upper and lower bounds on zeroth-order general Randić index (for γ < 0 ) in terms of connectivity, minimum degree, and independent number. In this paper, we put sharp upper bounds on the first general Zagreb index in terms of independent number, minimum degree, and connectivity for γ . Furthermore, extremal graphs are also investigated which attained the upper bounds.


2020 ◽  
pp. 1401-1406
Author(s):  
G. H. SHIRDEL ◽  
H. REZAPOUR ◽  
R. NASIRI

The topological indices are functions on the graph that do not depend on the labeling of their vertices. They are used by chemists for studying the properties of chemical compounds.  Let  be a simple connected graph. The Hyper-Zagreb index of the graph ,  is defined as  ,where  and  are the degrees of vertex  and , respectively. In this paper, we study the Hyper-Zagreb index and give upper and lower bounds for .


2016 ◽  
Vol 31 ◽  
pp. 167-186 ◽  
Author(s):  
Kinkar Das ◽  
Seyed Ahmad Mojalal

Let $G=(V,E)$ be a simple graph of order $n$ with $m$ edges. The energy of a graph $G$, denoted by $\mathcal{E}(G)$, is defined as the sum of the absolute values of all eigenvalues of $G$. The Laplacian energy of the graph $G$ is defined as \[ LE = LE(G)=\sum^n_{i=1}\left|\mu_i-\frac{2m}{n}\right| \] where $\mu_1,\,\mu_2,\,\ldots,\,\mu_{n-1},\,\mu_n=0$ are the Laplacian eigenvalues of graph $G$. In this paper, some lower and upper bounds for $\mathcal{E}(G)$ are presented in terms of number of vertices, number of edges, maximum degree and the first Zagreb index, etc. Moreover, a relation between energy and Laplacian energy of graphs is given.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1687
Author(s):  
Slobodan Filipovski ◽  
Robert Jajcay

Let G be a graph on n vertices and m edges, with maximum degree Δ(G) and minimum degree δ(G). Let A be the adjacency matrix of G, and let λ1≥λ2≥…≥λn be the eigenvalues of G. The energy of G, denoted by E(G), is defined as the sum of the absolute values of the eigenvalues of G, that is E(G)=|λ1|+…+|λn|. The energy of G is known to be at least twice the minimum degree of G, E(G)≥2δ(G). Akbari and Hosseinzadeh conjectured that the energy of a graph G whose adjacency matrix is nonsingular is in fact greater than or equal to the sum of the maximum and the minimum degrees of G, i.e., E(G)≥Δ(G)+δ(G). In this paper, we present a proof of this conjecture for hyperenergetic graphs, and we prove an inequality that appears to support the conjectured inequality. Additionally, we derive various lower and upper bounds for E(G). The results rely on elementary inequalities and their application.


2016 ◽  
Vol 24 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Nihat Akgunes ◽  
Muge Togan ◽  
Aysun Yurttas ◽  
I. Naci Cangul ◽  
...  

AbstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as, where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariantsandnamed as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) =. The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 98 ◽  
Author(s):  
Muhammad Kamran Jamil ◽  
Ioan Tomescu ◽  
Muhammad Imran ◽  
Aisha Javed

For a graph G without isolated vertices, the inverse degree of a graph G is defined as I D ( G ) = ∑ u ∈ V ( G ) d ( u ) − 1 where d ( u ) is the number of vertices adjacent to the vertex u in G. By replacing − 1 by any non-zero real number we obtain zeroth-order general Randić index, i.e., 0 R γ ( G ) = ∑ u ∈ V ( G ) d ( u ) γ , where γ ∈ R − { 0 } . Xu et al. investigated some lower and upper bounds on I D for a connected graph G in terms of connectivity, chromatic number, number of cut edges, and clique number. In this paper, we extend their results and investigate if the same results hold for γ < 0 . The corresponding extremal graphs have also been identified.


2021 ◽  
Vol 31 (04) ◽  
pp. 2150061
Author(s):  
Zeraoulia Elhadj

In this short note, we prove some lower and upper bounds for the interval length function for vertical monotonicity of topological entropy of the Lozi mappings.


Sign in / Sign up

Export Citation Format

Share Document