scholarly journals Numerical simulation of the flow field and snowdrift around snow fences using a generalized coordinate system.

2000 ◽  
Vol 62 (5) ◽  
pp. 451-462 ◽  
Author(s):  
Shirou YAMASHITA ◽  
Tetuya KAWAMURA
2015 ◽  
Vol 1083 ◽  
pp. 190-196
Author(s):  
Liu Shuai Cao ◽  
Jun Zhu ◽  
Guang Hui Zeng

The numerical simulation of oblique towing tests (OTT) and rotating arm tests (RAT) for a submarine model was undertaken with the same grid topology. As for the OTT simulation, to improve the efficiency and accuracy of the computation, the drift sweep procedure was adopted. In contrast with the steady drift case, rotating motion for a submarine is more complex. The rotating reference frame was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a body-fixed rotating coordinate system were treated explicitly and added to the momentum equations as source terms. The user-defined boundary conditions were coded to give the correct magnitude and direction of entrance velocity. Lastly, the computed forces and moments as a function of drift angle during the two kinds of simulations were compared with experimental results, as well as literature values. They always show the correct trend. The flow field and streamline patterns in rotating motion were depicted. It indicates that the method used in the paper is reliable and the same grid topology can be used for the simulation of two simplified maneuvers.


2020 ◽  
Vol 1670 ◽  
pp. 012030
Author(s):  
Shiming Chen ◽  
GuichunYang ◽  
Shuang Zhou ◽  
Wenzhuo Chen ◽  
Jinfa Guan ◽  
...  

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


Sign in / Sign up

Export Citation Format

Share Document