scholarly journals Distensibility Index of Inferior Vena Cava and Pulse Pressure Variation as Predictors of Fluid Responsiveness in Mechanically Ventilated Shocked Patients

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Wo'oud Mohiedden Mohammad Abdelfattah ◽  
Sahar Saad-eldeen Elgammal ◽  
Khaled Mohammad Elsayed ◽  
Sherif Mohammad Said Mowafy ◽  
Radwa Mohammad Abdalla
2016 ◽  
Vol 34 ◽  
pp. 46-49 ◽  
Author(s):  
Olivia Haun de Oliveira ◽  
Flávio Geraldo Rezende de Freitas ◽  
Renata Teixeira Ladeira ◽  
Claudio Henrique Fischer ◽  
Antônio Tonete Bafi ◽  
...  

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Temistocle Taccheri ◽  
Francesco Gavelli ◽  
Jean-Louis Teboul ◽  
Rui Shi ◽  
Xavier Monnet

Abstract Background In patients ventilated with tidal volume (Vt) < 8 mL/kg, pulse pressure variation (PPV) and, likely, the variation of distensibility of the inferior vena cava diameter (IVCDV) are unable to detect preload responsiveness. In this condition, passive leg raising (PLR) could be used, but it requires a measurement of cardiac output. The tidal volume (Vt) challenge (PPV changes induced by a 1-min increase in Vt from 6 to 8 mL/kg) is another alternative, but it requires an arterial line. We tested whether, in case of Vt = 6 mL/kg, the effects of PLR could be assessed through changes in PPV (ΔPPVPLR) or in IVCDV (ΔIVCDVPLR) rather than changes in cardiac output, and whether the effects of the Vt challenge could be assessed by changes in IVCDV (ΔIVCDVVt) rather than changes in PPV (ΔPPVVt). Methods In 30 critically ill patients without spontaneous breathing and cardiac arrhythmias, ventilated with Vt = 6 mL/kg, we measured cardiac index (CI) (PiCCO2), IVCDV and PPV before/during a PLR test and before/during a Vt challenge. A PLR-induced increase in CI ≥ 10% defined preload responsiveness. Results At baseline, IVCDV was not different between preload responders (n = 15) and non-responders. Compared to non-responders, PPV and IVCDV decreased more during PLR (by − 38 ± 16% and − 26 ± 28%, respectively) and increased more during the Vt challenge (by 64 ± 42% and 91 ± 72%, respectively) in responders. ∆PPVPLR, expressed either as absolute or as percent relative changes, detected preload responsiveness (area under the receiver operating curve, AUROC: 0.98 ± 0.02 for both). ∆IVCDVPLR detected preload responsiveness only when expressed in absolute changes (AUROC: 0.76 ± 0.10), not in relative changes. ∆PPVVt, expressed as absolute or percent relative changes, detected preload responsiveness (AUROC: 0.98 ± 0.02 and 0.94 ± 0.04, respectively). This was also the case for ∆IVCDVVt, but the diagnostic threshold (1 point or 4%) was below the least significant change of IVCDV (9[3–18]%). Conclusions During mechanical ventilation with Vt = 6 mL/kg, the effects of PLR can be assessed by changes in PPV. If IVCDV is used, it should be expressed in percent and not absolute changes. The effects of the Vt challenge can be assessed on PPV, but not on IVCDV, since the diagnostic threshold is too small compared to the reproducibility of this variable. Trial registration: Agence Nationale de Sécurité du Médicament et des Produits de santé: ID-RCB: 2016-A00893-48.


2020 ◽  
Author(s):  
Temistocle Taccheri ◽  
Francesco Gavelli ◽  
Jean-Louis Teboul ◽  
Rui Shi ◽  
Xavier Monnet

Abstract BackgroundIn patients ventilated with tidal volume (Vt) <8 mL/kg, pulse pressure variation (PPV) and, likely, the distensibility of the inferior vena cava diameter (IVCV) are unable to detect preload responsiveness. In this condition, passive leg raising (PLR) could be used but it requires a measurement of cardiac output. The tidal volume (Vt) challenge (PPV changes induced by a 1-min increase in Vt from 6 to 8 mL/kg) is another alternative, but it requires an arterial line. We tested whether, in case of Vt=6mL/kg, the effects of PLR could be assessed through changes in PPV or in IVCV rather than changes in cardiac output, and whether the effects of the Vt challenge could be assessed by changes in IVCV rather than changes in PPV.MethodsIn 30 critically ill patients without spontaneous breathing and cardiac arrhythmias, ventilated with Vt=6 mL/kg, we measured cardiac index (CI) (PiCCO2), IVCV and PPV before/during a PLR test and before/during a Vt challenge. A PLR-induced increase in CI ≥10% defined preload responsiveness.ResultsAt baseline, IVCV was not different between preload responders (n=15) and non-responders. Compared to non-responders, PPV and IVCV decreased more during PLR (by -38±16% and -26±28%, respectively) and increased more during the Vt challenge (by 64±42% and 91±72%, respectively) in responders. ∆PPVPLR, expressed either as absolute or percent relative changes, detected preload responsiveness (area under the receiver operating curve, AUROC: 0.98±0.02 for both). ∆IVCVPLR detected preload responsiveness only when expressed in absolute changes (AUROC: 0.76±0.10), not in relative changes. ∆PPVVt, expressed as absolute or percent relative changes, detected preload responsiveness (AUROC: 0.98±0.02 and 0.94±0.04, respectively). This was also the case for ∆IVCVVt but, the diagnostic threshold (1 point or 4%) was below the least significant change of IVCV (9[3-18]%).ConclusionsDuring mechanical ventilation with Vt=6 mL/kg, the effects of PLR can be assessed by changes in PPV. If IVCV is used, it should be expressed in percent and not in absolute changes. The effects of the Vt challenge can be assessed on PPV, but not on IVCV, since the diagnostic threshold is too small with regards to the reproducibility of this variable.Trial registrationIDRCB: 2016-A00893-48


2009 ◽  
Vol 110 (5) ◽  
pp. 1092-1097 ◽  
Author(s):  
Daniel De Backer ◽  
Fabio Silvio Taccone ◽  
Roland Holsten ◽  
Fayssal Ibrahimi ◽  
Jean-Louis Vincent

Background Heart-lung interactions are used to evaluate fluid responsiveness in mechanically ventilated patients, but these indices may be influenced by ventilatory conditions. The authors evaluated the impact of respiratory rate (RR) on indices of fluid responsiveness in mechanically ventilated patients, hypothesizing that pulse pressure variation and respiratory variation in aortic flow would decrease at high RRs. Methods In 17 hypovolemic patients, thermodilution cardiac output and indices of fluid responsiveness were measured at a low RR (14-16 breaths/min) and at the highest RR (30 or 40 breaths/min) achievable without altering tidal volume or inspiratory/expiratory ratio. Results An increase in RR was accompanied by a decrease in pulse pressure variation from 21% (18-31%) to 4% (0-6%) (P &lt; 0.01) and in respiratory variation in aortic flow from 23% (18-28%) to 6% (5-8%) (P &lt; 0.01), whereas respiratory variations in superior vena cava diameter (caval index) were unaltered, i.e., from 38% (27-43%) to 32% (22-39%), P = not significant. Cardiac index was not affected by the changes in RR but did increase after fluids. Pulse pressure variation became negligible when the ratio between heart rate and RR decreased below 3.6. Conclusions Respiratory variations in stroke volume and its derivates are affected by RR, but caval index was unaffected. This suggests that right and left indices of ventricular preload variation are dissociated. At high RRs, the ability to predict the response to fluids of stroke volume variations and its derivate may be limited, whereas caval index can still be used.


Sign in / Sign up

Export Citation Format

Share Document